
1

Adaptive Rigidification of Discrete Shells

ALEXANDRE MERCIER-AUBIN,McGill University, Canada
PAUL G. KRY,McGill University, Canada

0 5 10 15 20
Time (seconds)

10 -2

10 0

W
al

l C
lo

ck
 T

im
e

elastic
adaptive

Fig. 1. Local deformations at the elbow require elastic deformation during bending, while the rest of the sleeve
simulates as a rigid body, providing an order of magnitude faster computation in comparison to a fully elastic
simulation. A bending arm tends to only generate local deformation on a sleeve near the elbow with otherwise
rigidly moving wrinkles. This allows the coarsening of fine detailed wrinkles through adaptive rigidification.
In this example, our implementation achieves a nearly constant improvement with performances more than
an order of magnitude faster than the elastic simulation.

We present a method to improve the computation time of thin shell simulations by using adaptive rigidification
to reduce the number of degrees of freedom. Our method uses a discretization independent metric for bending
rates, and we derive a membrane strain rate to curvature rate equivalence that permits the use of a common
threshold. To improve accuracy, we enhance the elastification oracle by considering both membrane and
bending deformation to determine when to rigidify or elastify. Furthermore, we explore different approaches
that are compatible with the previous work on adaptive rigidifcation and enhance the accuracy of the
elastification on new contacts without increasing the computational overhead. Additionally, we propose a
scaling approach that reduces the conditioning issues that arise from mixing rigid and elastic bodies in the
same model.

Additional Key Words and Phrases: cloth, shells, adaptive simulation, rigid bodies, finite element

ACM Reference Format:
Alexandre Mercier-Aubin and Paul G. Kry. 2023. Adaptive Rigidification of Discrete Shells. Proc. ACM Comput.
Graph. Interact. Tech. 6, 2, Article 1 (August 2023), 17 pages. https://doi.org/10.1145/3606932

Authors’ addresses: Alexandre Mercier-Aubin, McGill University, Canada, alexandre.mercier-aubin@mail.mcgill.ca; Paul G.
Kry, McGill University, Canada, kry@cs.mcgill.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2577-6193/2023/8-ART1 $15.00
https://doi.org/10.1145/3606932

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

https://doi.org/10.1145/3606932
https://doi.org/10.1145/3606932

1:2 Mercier-Aubin, A.

1 INTRODUCTION
In any standard elastodynamic simulation, interactions between models are governed by physical
laws for realistic simulations. Integrating in time the degrees of freedom often requires expensive
iterative solvers that terminate before convergence or introduce significant numerical damping.
Scaling these simulations to large scenes without approximations can be challenging, as many
approximations are set a priori, such as discretizing time according to a fixed step size and
discretizing models into elements. However, precomputing the initial discretization of models
can help alleviate some of the computational stress, and adaptive techniques can refine or coarsen
the objects as needed. As the number of elements in a scene grows, reducing the size of the system
becomes increasingly important for achieving efficient and accurate simulations.
The simulation of thin tetrahedral meshes is subject to even more problems, as it often leads

to poorly conditioned system due to sliver shaped elements, or extremely high resolution models
necessary for the deformation of very thin models. Instead of volumetric meshes, 2D models with
a thickness parameter and assumption of non-deformation in the normal directions can be used
to create plausible simulations with a potentially coarser mesh while achieving similar results.
However, thin shells using 2D elements poses its own set of challenges. The bending energies
introduce non-linearity, necessitating smaller step sizes or an higher number of iterations for time
integration. Nevertheless, bending energies are necessary to create dynamic, cloth-like wrinkles
with rich wavy motions.

In this paper, we propose a method to adaptively coarsen and refine thin shells at runtime.
This builds upon the rigidification method introduced by Mercier-Aubin et al. [2022]. In all large
scale simulations, some elements will inevitably be static or moving rigidly, and therefore wasting
computational resources on the deformation of non-deforming degrees of freedom. In Figure 1, a
horizontally oriented sleeve has large undeforming regions when it bends, but also features dynamic
deformation near the elbow. Adaptive rigidification is efficient even on highly wrinkled models.
On-demand elastificationmakes dynamic scenes properly dependent on their environment, allowing
elements to alternate between a fast rigid representation and the accurate elastic counterpart.

Direct application of the previous adaptive rigidification method in the case of shells introduces
new challenges. The bending deformation occurs over edges, making it impossible to evaluate
using only the per triangle strain rate from membrane deformation. Additionally, bending along the
discretized edges is unrelated to stretching. For example, a flat hanging piece of cloth experiences
only stretching in the planar directions due to gravity and does not express any bending deformation.
Likewise, making each triangle an independent rigid body capable of bending would require more
degrees of freedom per element, which defeats the purpose of adaptive rigidification. Because
bending and membrane deformation are two independent types of deformation, we must consider
both in our rigidification process as opposed to the previouswork. Shells also require a new threshold
for the bending motions to prevent premature rigidification, which would prevent elements from
bending.
Collisions are a common mechanism for elastification, and for good performance we need an

oracle that can identify a small local region of the mesh to elastify based on a threshold. The previous
work uses a single iteration of preconditioned conjugate gradient, which can be problematic for
shells, in particular, those with high membrane stiffness. If only a small number of contacts are
active, the single iteration of preconditioned conjugate gradient is not enough to properly propagate
the elastification and cause the bending component to wake up. We present different approaches,
including a fast contact filter that approximate the behaviour of the impact on the nodes adjacent
to the contact location.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

Adaptive Rigidification of Discrete Shells 1:3

In the following sections, we present a new adaptive simulation method for thin shells, which
can produce results that closely resemble a fully elastic simulation while often having computation
times more than an order of magnitude faster. We test our improvement to the oracle’s contact
handling by comparing our filter with the previous method for handling contacts as well as slower,
but more accurate approaches to solve for the approximate contact velocities. We also discuss the
difference between the curvature rate and the dihedral angle rate as well as some of their potential
applications in the rigidification process.

2 RELATEDWORK
Remeshing [Alliez et al. 2008] is often used to adaptively coarsen shells on the fly. This generates
new positions using either subdivision rules [Bender and Deul 2012; Cirak et al. 2000; Li and Volkov
2005; Loop 1987] or splitting coupled with edge flipping to improve the conditioning elements [Jiao
et al. 2006]. This type of technique generally must handle the buckling or instabilities that can
arise when remeshing curved surfaces with coarser triangles. One way to handle this is to use a
measure the quality of the new elements to determine when to remesh them [Narain et al. 2012;
Wicke et al. 2010]. These techniques are good for surfaces that are developable or that have large
nearly flat regions, because these regions will remain indistinguishable from fine to coarse. Another
approach refines basis functions [Grinspun et al. 2002; Hahn et al. 2014] to allow deformation
in the coarse models by adding new degrees of freedom. In contrast, our method is orthogonal
to these approaches and reduces the size of the system by simulating those regions of a mesh
without dynamic deformations as rigid bodies, regardless if the region is flat or consisting of a
dense collection of triangulated folds.
In contrast to mesh refinement, via remeshing, with the goal of simulating a mesh with the

appropriate resolution, other approaches separate the problem into two distinct parts, i.e., a coarse
simulation and a second mechanism for adding details. For instance, the approach of Rohmer et al.
[2010] first simulates a coarse models, and then refines the coarse mesh in a post-process refinement
to add wrinkle details. A different strategy is taken by Müller and Chentanez [2010], where fine
mesh vertices permit wrinkles via approximate constraints to a coarse simulation. There likewise
exists other strategies and heuristics for upscaling simulations. The formation of wrinkles can be
data-driven [Miguel et al. 2012; Popa et al. 2009], and machine learning techniques can predict
physically plausible coarse-to-fine mappings of vertices [Kavan et al. 2011]. Our approach instead
starts with a high-resolution model and lets the simulation choose which parts need the degrees of
freedom, and which regions can be evolved with only rigid motion.

While not directly related to adaptive simulation, we note that the simulation of stiff shells can be
challenging because large stiffness ratios can lead to poorly conditioned systems. Physical fabrics
typically have a non-linear stress-strain relationship that increase the stiffness rapidly as it deforms.
One way to reduce the conditioning issue is to add strain limits. This can be done with correction
strain constraints or projections after each integration step [Goldenthal et al. 2007; Provot 1995]. In
the case of inextensible cloth [English and Bridson 2008], constraints provide this strain limit in a
quadrilateral mesh which avoids locking artifacts due to discretization. In contrast to these other
techniques, our method makes strain limited regions rigid when they maintain the limit (and have
zero deformation rate in the orthogonal direction). This addresses the conditioning problems, i.e.,
when these strain limited regions are simulated as rigid.

Freezing and sleeping techniques are well known approaches to save computation during static
periods of dynamic simulations. For instance, using an adaptive Hamiltonian can reduce the size of
the simulations at run-time by disabling positional degrees of freedom of a system in regions where
there is low momentum [Artemova and Redon 2012; Manteaux et al. 2013]. Freezing can likewise
be implemented in a hierarchy to dynamically tune the complexity of a viscoelastic body [Tournier

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

1:4 Mercier-Aubin, A.

et al. 2014]. Different metrics can be used to initiate freezing, for example, by analyzing kinetic
energies or velocities in simulations of rigid body contact [Erleben 2004; Schmidl and Milenkovic
2004]. In the context of rigid bodies, another approach is to merge [Coevoet et al. 2020] collections
of contacting bodies when they have zero relative velocity. This is similar to our work in that
it reduces the degrees of freedom of the system, simplifies collision detection cost, while still
permitting the collection to move as a rigid body.
Merging degrees of freedom into rigid bodies is likewise a key idea in adaptive rigidification

of elastic solids [Mercier-Aubin et al. 2022], i.e., that it is valuable to permit regions of an elastic
simulation to continue moving rigidly, as opposed to freezing degrees of freedom in the inertial
frame.

3 METHODS
We first extend adaptive rigidification to support triangular elements in a 3D setting. Thin shells
feature two major hindrances that require a different approach for rigidification; the bending
component cannot be analyzed from the deformation gradient, and the constant thickness of shells
requires the definition of the deformation gradient to be changed for rigid rotations so as to yield a
zero strain.

3.1 Simulation of Shells
For standard volumetric meshes, we define the deformation gradient 𝐹 = 𝐵𝒙 from a kinematic
mapping 𝐵 and the generalized coordinates 𝑥 of our element’s vertices [Bro-Nielsen and Cotin
1996]. However, shells are not inherently volumetric. We use an approximation of the thickness by
projecting out any deformation in the normal directions 𝒏 of the faces [Levin 2020]. This is akin to
simulating a fake prismatic element. We do this projection by adding a new term 𝜂 to the definition
of the deformation gradient

𝐹 = 𝐵𝒙 + 𝜂𝒏, (1)
which then gives us the deformation gradient for shells. This 𝜂 ∈ R9×3 term

𝜂 =


𝒏0 0 0
0 𝒏0 0
0 0 𝒏0

 (2)

is a block matrix where the zeros 0 are 3 by 1 column vectors of zeros and 𝒏0 is the reference space
normal of the element. The 𝐵 and 𝜂 matrices are pre-computed at the start of the simulation with
the fully elastic mesh and cached.
Baraff and Witkin [1998] separate the potential energy into three energies. Both the shear and

stretch energies use a function that maps a 2D projection of thin shells to their 3D world positions,
effectively computing the energies as 2D problems. Grinspun et al. [2003] introduces a bending
energy using the angle between two face normals, which is coupled with a stiffness parameter and
creates resistance to bending. We use a similar approach by separating the membrane energies
from the bending energies.

3.1.1 Membrane Energy. To help ensure stability we use implicit time integration [Etzmub et al.
2003], so for the membrane energy density Ψ𝑒 we must compute the gradient 𝜕Ψ𝑒

𝜕𝐹
and Hessian

𝜕2Ψ𝑒
𝜕𝐹 2 . To get the internal forces 𝑓𝑒 = −𝑉 𝜕Ψ𝑒

𝜕𝐹
we multiply the gradient by the negative volume. In

the case of a shell, the volume is the area of the triangle multiplied by a thickness parameter. In our
examples, we tried various membrane energy formulations including neoHookean, Saint-Venant
Kirchoff, and more. We note that we use the Grinspun et al. [2003] membrane energy in our time
comparisons because in our experience it allows a bigger step size with fewer Newton iterations.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

Adaptive Rigidification of Discrete Shells 1:5

3.1.2 Bending Energy. We compute the dihedral angle

𝜃 = 𝜋 − tan−1 𝒆 · (𝒏1 × 𝒏2)
𝒏1 · 𝒏2

, (3)

Ψ𝑏 =
∑︁
𝑒

(𝜃𝑒 − 𝜃𝑒)∥𝒆∥/ℎ𝑒 , (4)

π-θ

n2

n1 h
e

Fig. 2. dihedral angle

for each edge, where 𝒏1, and 𝒏2 are the adjacent face normals, and 𝒆
is the edge vector (see Figure 2). We then use the resulting angles to
compute the bending energies from Tamstorf and Grinspun [2013].
Here 𝜃𝑒 is the dihedral angle at rest ℎ𝑒 is the length of the dual edge
connecting the barycenters of two triangles at rest, and 𝒆 is the edge
at rest.
We sum the bending energy to the membrane energy Ψ = Ψ𝑏 +

𝑉Ψ𝑒 , then find their gradient and Hessian to allow implicit time
integration.

3.2 Simulating Coupled Rigid Bodies
In our mixed simulations, the elastic portions of the shell can have dynamic deformations while
other portions replaced with rigid bodies do not allow for bending, with each connected component
acting as a single thin rigid body. The adaptive model reduction uses the matrix

𝐺 =

[
𝐼 0
0 Γ

]
, (5)

to map degrees of freedom from the mixed rigid-elastic system to the fully elastic model. Each
vertex inside the rigidified body has a vector 𝑟 that points to it from the center of mass in rigid
body frame. From this we can build a matrix

Γ𝑖 =
[
𝐼 −(𝑅 𝒓𝑖)×

]
(6)

that maps the rigid body velocities to each individual vertex of the rigid body.
For every mesh, we group rigid elements using an adjacency graph of elements with shared edges

for shells. We compute this graph prior to the simulation. Using a breadth first search algorithm,
we navigate the graph to find the rigid connected component. Each connected component is a new
rigid body in our simulation. When building the bodies, we compute properties like the center of
mass 𝑝 , the rotation 𝑅 ∈ 𝑆𝑂 (3), the angular velocity𝜔 , the linear velocity 𝑣 . These are set according
to the state of the degrees of freedom rigidified to exactly preserve momentum under rigid motions.
On rigidification, we replace the elastic degrees of freedom in our system with the appropriate

rigid degrees of freedom using the current step’s 𝐺 mapping from Equation 5.
Lumping elements together has an impact on the mass ratio of the system which can lead to a

higher condition number. We scale the per Newton-step linear system to get the condition number
down to a similar or better range as the fully elastic system. We use the sparse matrix scaling
of Curtis and Reid [1972], which iteratively solves a least-square problem for the row and columns
scaling factors. The inclusion of a scaling matrix therefore makes adaptive rigidification easier to
integrate with iterative solvers.

3.3 Time Integration
Shells are subject to tricky scenarios like buckling that require more than one Newton iteration.
Instead of a single linearized Newton step, we simulate shells by using the common optimization

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

1:6 Mercier-Aubin, A.

input :Velocities ¤𝒙𝑡 at the start of the step
Function 𝑄 to minimize
Kinematic elastic-adaptive mapping 𝐺
Predicted reduction 𝜎 stop parameter
Scaling matrix 𝑆

output :Velocities ¤𝒙𝑡+1 after stepping
¤𝑥𝑡+1 ← ¤𝑥𝑡
for 𝑖 < Newton iterations do

𝐴← 𝑆𝐺𝑇 (∇2𝑄 (¤𝒙𝑡 , ¤𝒙𝑡+1))𝐺
𝒃 ← −𝑆𝐺𝑇 (∇𝑄 (¤𝒙𝑡 , ¤𝒙𝑡+1))
Δ ¤𝒙 ← 𝐴−1𝒃
𝛼 ← 1
while 𝑄 (¤𝒙𝑡 , ¤𝒙𝑡+1) −𝑄 (¤𝒙𝑡 , ¤𝒙𝑡+1 + 𝛼Δ ¤𝒙) < 𝜎𝛼𝑄 (¤𝒙𝑡 , ¤𝒙𝑡+1) do

𝛼 ← 1
2𝛼

end
Δ ¤𝒙𝑐 ← Contact Solve
¤𝒙𝑡+1 ← ¤𝒙𝑡+1 +𝐺𝑇 (𝛼 (Δ ¤𝒙) + Δ ¤𝒙𝑐)

end
Algorithm 1: Adaptively rigidifying Newton’s method

function

𝑄 (¤𝒙𝑡 , ¤𝒙𝑡+1) = ¤𝒙𝑇𝑡+1𝑀
(

1
2
¤𝒙𝑡+1 − ¤𝒙𝑡

)
+ Ψ − ℎ ¤𝒙𝑇𝑡+1 𝒇ext, (7)

where𝑀 is the mass matrix, 𝒇ext are the external forces such as gravity, and ℎ is the step size. Here
¤𝒙𝑡 is the velocity vector at time 𝑡 . For each time step we use a Newton-Raphson algorithm to solve
for the next step velocities

¤𝒙𝑡+1 = arg min
¤𝒙𝑡+1∈R𝑛

𝑄 (¤𝒙𝑡 , ¤𝒙𝑡+1). (8)

We use a line search based on Armijo’s rule where we simply reduce the Newton iteration’s step
length until we get an improved solution. We modify the optimization function to instead take as
input the reduced system using the 𝐺 matrix from Equation 5, as shown in Algorithm 1.

In the previous adaptive rigidification work [Mercier-Aubin et al. 2022], speedups were significant
for a semi-implicit backward Euler integration method. Increasing the number of Newton iterations
further increases the speedup as adaptive rigidification enhances the speed of each iteration, but
has a linear overhead only prior to the solve.

3.4 Rigidification
If the membrane strain of an element and the bending deformation with its adjacent elements are
constant over a period of time, we allow the element to become rigid. We monitor the change in
deformations over several time steps to prevent momentary rigidification such as when a pendulum
hits its highest point of swing, or when a cantilever plate hits its potential energy peak. Groups of
adjacent elements are concatenated into a single rigid body using a connected component detection
algorithm which is equivalent to the adaptive rigidification of 2D meshes.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

Adaptive Rigidification of Discrete Shells 1:7

-8

-7

-6

-5

1 PCG 1 CG + 1 PCG 2 PCG 1 PCG + A-1Jc
Tλ1 PCG + Ã0

-1 Jc
T λContact Filter Ground Truth

Fig. 3. A tiny upward impulse applied to the tip of the hat elastifies regions according to the oracle’s contact
handler and different thresholds on a log scale.

We must monitor all deformation changes. For the membrane deformations, we compute the
membrane strain rate

¤𝐸𝑡+1 =
𝐸𝑡+1 − 𝐸𝑡

ℎ
, (9)

using finite differences of the Green strain 𝐸 = 1
2 (𝐹

𝑇 𝐹 − 𝐼). At the beginning of a simulation, we
initialize the cached strain of the previous step to be the identity matrix. We monitor ¤𝐸, and rigidify
the elements of a mesh when they satisfy a threshold over a set of frames. This is enough for two
dimensional simulations or for tetrahedral meshes.
For the bending deformations, we could monitor the dihedral angle for every edge with two

adjacent elements. But to make the thresholds discretization independent, we instead monitor the
discrete curvature

𝜅𝑒 = 2
𝜃𝑒

ℎ𝑒
. (10)

Because we already need the dihedral angles for the bending energies, computing the curvature is
simply an element-wise multiplication by a constant value for each edge. We then approximate the
curvature rates with finite differences

¤𝜅𝑒,𝑡 =
𝜅𝑒,𝑡+1 − 𝜅𝑒,𝑡

ℎ
. (11)

For an element to rigidify, it must satisfy both the threshold on the maximum of the per edge
curvature rates ¤𝜅𝑒,𝑡 , and the threshold on the membrane strain rate ¤𝐸.

3.5 Elastification
Rigidified parts of the models must become elastic again on visually significant deformation due
to elastic waves, changing contact forces or new contact forces. Within a rigid body, because the
elastic degrees of freedom are replaced, we do not have information about the deformation rate of
the elastic model when it is solved as rigid. We must predict the parts of a rigidified model that will
have a deformation velocity in the next time step.

We can approximate the change in velocities due to elastic motions with a single preconditioned
conjugate gradient iteration on the first Newton step with a fully elastic system

Δ ¤𝒙 = 𝐴−1 (𝒃 − 𝐽𝑇𝑐 𝝀) + ℎ ¥𝒙𝑔, (12)

where 𝐽𝑇𝑐 𝝀 are contact forces, 𝐴 and 𝒃 are the derivatives of the reduced system as shown in
Algorithm 1, and where 𝑓ext in 𝑄 does not include forces due to gravity. Instead, the gravity
velocities ¥𝒙𝑔 are injected into 𝒃 (i.e., ¤𝒙𝑡 modified to be ¤𝒙𝑡 + ℎ ¥𝒙𝑔) and also added to the change in
velocities after the solve, because this helps the approximate solve produce a better solution.

New or moving contacts can also create elastification. In the oracle, we handle previously existing
contacts, and new contacts differently. We concatenate the two types of constraints in 𝐽𝑇𝑐 𝝀, and add
them to the system to solve. For existing contacts, we reuse the previous adaptive step impulses

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

1:8 Mercier-Aubin, A.

as contacts for the oracle. Like the original adaptive rigidification, we approximate only the new
contacts for the oracle using a cheap bilateral constraint solve

𝐽𝑐𝑛𝐴̃
−1
0 𝐽𝑇𝑐𝑛𝝀𝑛 = 𝐽𝑐𝑛 (𝐴̃−1

0 𝒃 + ¤𝒙), (13)

where the constraint Jacobian 𝐽𝑐𝑛 contains only the new contact constraints, and 𝐴̃−1
0 is the

precomputed 3-by-3 block diagonal inverse matrix at rest (i.e., an approximation of 𝐴−1 with
zero coupling between vertices).
We use a preconditioner following that of Liu et al. [2017] and used by Mercier-Aubin et al.

[2022], which is computed as 𝐴𝑝 = 𝑀 + ℎ2𝐿 were 𝐿 = 𝐵𝑇𝑊𝐵 is the Laplacian of the mesh with a
block-diagonal weight matrix𝑊 , where each block entry contains the per-element Young’s modulus.
We use a single iteration of a preconditioned conjugate gradient using an incomplete Cholesky
factorization of 𝐴𝑝 to approximate the velocities due to elastic motions. With the approximated
velocities we can use the same formula for the membrane strain rate ¤𝐸 from Equation 9 and pick
a threshold for elastification. Compared to the original adaptive rigidification we also use the
approximate velocities to compute the approximate curvature rate ¤𝜅𝑒 .
The original adaptive rigidification oracle, however, does not always produce a change in

velocities significant enough to allow elastification for small localized impulses. This appears to be
due to a lack of local propagation, andwe speculate that this may stem from how the Laplacian-based
preconditioner propagates information globally and changes convergence behaviour during the first
iterations of PCG. We suggest a few cheap heuristics to warm-start the oracle with approximate
contact velocities from the impulses of the bilateral solve in Equation 13. We evaluate these
approaches only for new contacts and assume the old contacts were solved adequately during the
time integration.

An intuitive solution for local propagation is to do a single conjugate gradient iteration without
preconditioning, and then use the resulting approximate change in velocities due to contacts as
an initial iterate Δ ¤𝑥0 for the PCG solve. This only costs an extra linear pass over all the vertices.
In a similar train of thought, we can use the precomputed 𝐴̃−1

0 block diagonal matrix used for the
bilateral solve and obtain approximate contact change in velocities,

Δ ¤𝒙0 = Δ ¤𝒙𝑐 + ℎ 𝒇ext, (14)

Δ ¤𝒙𝑐 = 𝐴̃−1
0 𝐽𝑇𝑐 𝝀, (15)

where 𝒇ext is the precomputed external force vector. This option comes at the cost of sparse matrix
multiplications with only the new contact constraints, and Lagrange multipliers.
This leads us to yet another strategy. While a single iteration of unpreconditioned conjugate

gradient provides information about a local response, we can design an approach with a similar local
propagation effect, without the need to iterate through all the vertices. We propose to warm-start
the preconditioned conjugate gradient solve using approximate new contact velocities

Δ ¤𝑥𝑐 = 𝐽𝑇
𝑐𝑙
𝝀𝑙 , (16)

with impulses 𝝀𝑙 obtained with a discrete Laplacian operator for local diffusion of the impulse over
edges of the mesh with neighbouring non-colliding vertices. Figure 4 shows an example with a
contact force at a center vertex, and the filter weights applied to the patch. We avoid applying the
filter on neighbouring elements that are already in contact to avoid cancellation of the impulses
for the warm-start when multiple neighbours are in contact. We add rows to the Jacobian 𝐽𝑐 that
contain the corresponding impulse normals aligned with the degrees of freedom of neighbouring
vertices to obtain 𝐽𝑐𝑙 . This is the cheapest approach, with the cost being a simple sparse matrix
multiplication of the Lagrange multipliers with the constraint Jacobian of new contacts.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

Adaptive Rigidification of Discrete Shells 1:9

1

1 1

1-4

Fig. 4. Contact filter at
a degree 4 vertex.

While none of these approaches fundamentally alter the system to
solve, they can significantly improve the accuracy of the approximate one
iteration solve. Ourwarm-start techniques create initial solutions thatmimic
the mesh’s behaviour under compression caused by a new contact with
respect to the impact magnitude; a new contact will compress the mesh
proportionally to how hard it hits a surface.
For existing contacts, we reuse the previous adaptive step impulses as

contacts for the oracle, ensuring good continuity of the oracle’s prediction
with respect to the solve for the time integration.

3.6 Threshold Selection
Selecting the appropriate threshold for a simulation is akin to determining the acceptable level
of error. In general, smaller thresholds result in a more conservative simulation. To optimize this
process, we propose an approach that selects both thresholds simultaneously, using the concept of
speed limits to establish a relationship between bending deformations and membrane stretches.
However, for inextensible shells and other non-typical materials, decoupling the thresholds may be
necessary and advantageous.

r

θ
2

Fig. 5. A green line segment of length 𝑦 is
shown wrapped around a circle with radius
𝑟 , and stretched in the vertical direction.
Equating displacements 𝑑𝑏 and 𝑑𝑠 leads
us to equivalent thresholds for curvature
rate and membrane strain rate. While
bending and membrane deformations can
be independent, this makes the threshold
selection easier.

To begin, we select the membrane strain rate threshold
based on the volumetric threshold of the original
adaptive rigidification paper. We set the elastification
threshold to be an order of magnitude higher than the
rigidification threshold. We can then derive the curvature
rate thresholds based on a corresponding relationship.
This process ensures a cohesive and accurate simulation
for a variety of materials and scenarios.
To form a relationship between curvature rate and

membrane strain rate thresholds we consider stretching
and bending an initially straight vertical line segment as
shown in Figure 5. A small membrane stretch increases
the length by 𝑑𝑠 as measured in the vertical direction
from the top and bottom of the original line segment. A
small bend from flat to a curvature 𝜅 = 1/𝑟 can be seen
as creating a horizontal displacement of 𝑑𝑏 at the top and
bottom of the line segment when it wraps around a circle
of radius 𝑟 . This horizontal distance 𝑑𝑏 = 𝑟 − 𝑟 cos(𝜃).

Because the line wraps around the circle, we have

𝑟𝜃 =
𝑦

2
, (17)

or 𝜃 = 𝜅𝑦/2. If we approximate 𝑑𝑏 with a Maclaurin expansion for the cos function up to and
including the quadratic term, we have

𝑑𝑏 = 𝑟 − 𝑟
(
1 − 𝜃 2

2
+𝑂 (𝜃 4)

)
. (18)

Ignoring higher order terms and substituting the angle in Equation 18 using Equation 17 we obtain

𝑑𝑏 ≈
𝑦2

8𝑟
, (19)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

1:10 Mercier-Aubin, A.

W
al

l C
lo

ck
 T

im
e

0 5 10 15 20

10 -1

10 0

0 10 20 30
10 -2

10 0

CBA Multi-Spheres Tablecloth Dancer

elastic
adaptive

0 6 12
10 -2

10 0

10 2
Vertical Sleeve

0 2 4 6 8
Time (seconds)

10 -1

10 0

Rotating SphereD E

0 3 6 9 12

10 -1

10 0

3 9
Time (seconds)

Time (seconds)Time (seconds)Time (seconds)

W
al

l C
lo

ck
 T

im
e

Fig. 6. Set of comparisons all using seconds as the unit for wall clock times.

or 𝑑𝑏 ≈ 𝜅𝑦2/8. Thus, we know how displacement 𝑑𝑏 grows as curvature is increased from zero. We
can likewise see this as the displacement observed for a curvature rate change of ¤𝜅 over a small
time step ℎ, i.e., 𝑑𝑏 ≈ ℎ ¤𝜅𝑦2/8.
Now, considering a stretch rate of ¤𝑠 in the vertical direction over a small time step ℎ we have

𝑑𝑠 = ℎ ¤𝑠𝑦/2. Equating 𝑑𝑏 and 𝑑𝑠 and cancelling terms gives ¤𝜅 = 4
𝑦
¤𝑠 . Here, for simulating arbitrary

models, we interpret𝑦 as the diameter of the mesh at rest. Finally, because the membrane thresholds
are for the squared Frobenius norm of the Green strain rate (i.e., see 𝜏𝑚 = ¤𝑠2 if we choose the stretch
rate above to be at the threshold for a mesh at rest), we can compute the curvature rate threshold
𝜏𝑏 in terms of the membrane strain rate threshold 𝜏𝑚 using the formula

𝜏𝑏 =
4
𝑦

√
𝜏𝑚 . (20)

The concept of discrete curvature, while resolution independent, can lead to large rates for highly
bent elements. This is because the curvature is derived from the inverse radius of the osculating
circle, which becomes small for a large bend, producing large curvatures. When dealing with large
curvatures, even a slight change in angle on a highly bent edge can generate significant curvature
rates. While the resolution-independence is a benefit for measuring curvature rates in meshes with
different discretizations, the high rates in areas of high curvature can make the threshold selection
challenging. Curvature rates are better suited for fine models where per-edge angles are flatter. In
contrast, for a coarse model with elements of roughly consistent size, monitoring dihedral angles is
a reasonable alternative, but it is much harder to choose a dihedral angle rate threshold for meshes
with different element sizes.

4 RESULTS
Our oracle will produce elastification due to a new contact at a single vertex, and efficiently
propagate the impact without expensive extra computation. In Figure 7, for instance, once the brim
of the hat hits the floor, we obtain appropriate elastification of the deforming elements near the
initial contact. The elements adequately elastify as the elastic wave propagates through the hat,
while preserving rigidly moving parts at the opposite side of the model.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

Adaptive Rigidification of Discrete Shells 1:11

Our method allows locally bending or deforming regions to remain elastic while resting contacts
and rigidly moving chunks of elements rigidify. For instance, a cloth hanging on a sphere in
Figure 6-A has elastic regions where its edges are dangling and has a large central rigidified region
where the cloth is in static equilibrium.

We believe our method is the first adaptive technique to completely coarsen densely wrinkled
regions while preserving the fine definition of the cloth’s curvature. Figure 1 and Figure 6-D show
excellent examples of this. These examples feature sleeves with different cloth stiffness parameters,
and we observe rigid motion of rigidified wrinkles during arm motions.

We note that care is necessary when setting aggressive (higher) thresholds because this can lead
to visual artifacts. For example, there appears to be a small kick near the end of the vertical sleeve
simulation partially due to our threshold selection, but also due to the choice of energies pushing
the wrinkles downwards back to rest as the arm unbends.

Fig. 7. From left to right: elastic, adaptive with
contact filters, adaptive with a CG iteration
before the PCG iteration, and the original
adaptive rigidification algorithm.

Because our shell implementation natively works
with tetrahedra (it uses the same 3 by 3 deformation
gradient thanks to the normal projection), we can
easily mix elastic solids and shells. In Figure 6-B
we present a tablecloth modelled as a shell and
wine bottle modelled as a tetrahedral mesh. The
tablecloth has a large moving region that remains
rigidified while pulled, and likewise demonstrates
local deformation near the region stretched due to
frictional contacts from both the table and the bottle.
Figure 6-E shows a cloth on a high friction

spinning sphere which is inspired by an example
of Bridson et al. [2002]. The floor and an adjacent obstacle are frictionless. While large portions of
the mesh rigidify as the cloth spins on the sphere, the cloth also continues to exhibit significant
dynamics because there is no self contact in the simulation. We believe that adaptive rigidification
would work well with both penalty [Bridson et al. 2002] and barrier [Li et al. 2021] based contacts.

4.1 Speed
Table 1 shows performance measurements for the examples from the figures in this paper. The
simulations were timed including and excluding contacts to give a fair assessment of the wall clock
times. We note some improvements between 2𝑥 and 13𝑥 on scenes that were especially designed to
generate elastification and dynamic motions. We ran the simulations on a Windows 10 PC with an
Intel Core i7-6700K processor, and 64 GB of DDR3 RAM. The simulator is a fork of the publicly
available github from the adaptive rigidification project, with the core system in Matlab, and critical
snippets implemented in Mex C++.
Adaptive rigidification allows performance improvements more than an order of magnitude

faster than the non-adaptive meshes at various steps of the simulations. We also note that in any
scene, the overhead of the single PCG iteration and rigid body building remains negligible, even
when fully elastic. We present our time comparisons using log scales for fairness. In Figure 1 we
see that rigidification can accurately detect local deformation and maintain steady improvements
in computation time that is more than an order of magnitude faster than a fully elastic model. The
region of deformation is local near the elbow, where wrinkles form and rigidify, hence creating a
coarser model of the mesh under rigid motions while preserving the fine details of the wrinkles.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

1:12 Mercier-Aubin, A.

4.2 Conditioning
Mixing rigid bodies with elastic elements increases the mass ratio, leading to poorly conditioned
systems during time implicit integration. However, we show that a simple scaling technique [Curtis
and Reid 1972] can effectively reduce the condition number of our system, resulting in faster
simulations. This scaling 𝑆𝐴𝑥 = 𝑆 𝑏 makes the condition number more competitive with the fully
elastic system, while also benefiting from the reduced number of degrees of freedom inherent to
adaptive rigidification.
While conditioning is generally not a problem for direct solvers, it is beneficial for iterative

solvers. Likewise, while Jacobi preconditioning can easily resolve mass ratios, it is not as beneficial
for stiffness ratios. Nonlinear elastic materials undergoing large deformations can also exhibit
poor conditioning, as demonstrated by the streched cross model in Figure 8-A. Scaling will benefit
many iterative solvers, and such solvers may be preferred or needed for bigger scenes. Figure 8-A
shows that the Curtis and Reid [1972] scaling (CS) outperforms Jacobi scaling (JS) when it comes
to reducing the condition number of the adaptive system. See that the condition number also
sharply drops as the rigid chunks increase in size. This suggests that there is significant potential
for optimization when using adaptive rigidification in conjunction with larger rigid chunks, and
poorly shaped elements.

B

A

0 0.5 1 1.5
10 -5

W
al

l C
lo

ck
 T

im
e

Direct
PCG

10 -1
Iterative vs Direct Solve

Co
nd

iti
on

 N
um

be
r

Stretched Cross

0 0.5 1 1.5
10 0

10 2

10 4

10 6

Elastic
Elastic+CS
Adaptive

Adaptive+CS
Adaptive+JS

Time (seconds)

Fig. 8. A: comparing condition numbers
with or without scaling. B: comparing a
direct solver to an iterative solver.

In Figure 8-B we compare the time for each step of
the stretched cross simulation example using a direct
solve via LDL decomposition and scaling to that of a PCG
solve with scaling and tolerance of 1𝑒 − 4. For efficiency,
our PCG solve reuses the oracle’s preconditioner with
kinematic mapping to the coupled rigid-elastic system, i.e.,
𝑆𝐺𝑇𝐴𝑝𝐺 . As expected, stopping the iterative solver before
full convergence provides big savings in the computation
time. Nevertheless, while large systems can benefit from
an iterative solver, it can be beneficial to switch to a
direct solver for the small systems that arise when there
is extensive rigidification.

4.3 Strain Limiting
Strain limiting prevents deformation above or below a
strain limit. This models physical behaviour of deformable
objects acting almost rigidly when under heavy loads.
This has the added benefit of reducing the change in
deformation, further increasing the rate of rigidification,
and the speed of the simulation. We implement strain
limiting with the singular value decomposition of 𝐹 =

𝑈𝑆𝑉𝑇 and clamp the principal stretches 𝑠 ∈ 𝑆 like Wang et al. [2010]. This formulation of strain
limiting is particularly elegant as it allows us to reuse the singular value decomposition when
computing materials like the corotational energies. Moreover, we can save on the SVD computation
for the strain limiting of rigidified elements as they are non-deforming.
By limiting the strain, we also limit the rates of deformations, hence increasing the rate of

rigidification. Figure 6-A shows a piece of cloth with strain limiting where singular values are
clamped between 0.90 and 1.1. A large patch of stretched cloth quickly rigidifies in the middle of
the spheres, while motion is allowed where needed. The final result is visually indistinguishable
from the fully elastic simulation as we present it in the supplemental video.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

Adaptive Rigidification of Discrete Shells 1:13

A B

12952
4994

2739
0.05

0.1

0.2

Fig. 9. A: The rigidification patterns are consistent across resolutions. We show the total number of elements
in the shell cantilevers next to them. B: The simulation retains its quality regardless of the material properties
like the thickness. We list the respective thickness of each shell cantilever next to them.

In Figure 6-C, we chose a crinolette type of dress for the dancer to show that rigidification
natively handles stiff cloth/plastic even when the strain limits are reached. The adaptive approach
is also significantly faster than the elastic simulation at almost any point in time. The mannequin
model and dress are from Narain et al. [2012].

4.4 Oracle
In Figure 9-A, we see that using our bending threshold correspondence yields similar rigidification
patterns independent of the resolutions of our meshes. This holds across all of our scenes. We can
also pick custom bending thresholds for incompressible materials or if fine tuning is needed. The
rigidification process is material independent as it relies on the speed of deformation. Therefore,
choosing the thresholds for the membrane stretches, and then using our equivalence for the bending
thresholds yield a consistent quality of simulation regardless of the material used. In Figure 9-B,
we compare different material thicknesses and note that the regions of elastification intuitively
match their regions of deformation.
We compare various approaches to improve the new contact elastification regions in Figure 3.

Using the inverse matrix 𝐴−1 to find the contact velocities from the bilateral solve’s impulses
yields the closest elastification region to the ground truth of elastic propagation. However such
approach is overly costly. The contacts from the bilateral solve are already approximations, and the
oracle’s contact velocities need not be accurate. We only require a solution that generates enough
elastification to preserve momentum under contact. A reasonable alternative is to instead use the
precomputed block diagonal inverse matrix 𝐴̃−1

0 which has a notion of the geometry of our system
at rest. Using this method yields an elastification region equivalent to doing a single CG iteration
prior to the PCG iteration. Using two PCG iterations gives slightly worse local propagation, but
better overall distant elastification.
In practice, most of the momentum loss on contact comes from simulating a contact as rigid

when it should be deforming. The fast contact filter generates just enough elastification to handle
typical simulations well, while the precomputed diagonal matrix multiplication is more appealing
for fine contact handling like the soft touch of a feather. In Figure 7 the contact filter allows visually
consistent simulation of the hat even with a small impact, and only requires the diffusion of an
impulse over a few vertices as opposed to a CG iteration over all degrees of freedom or a sparse
matrix multiplication with 𝐴. We see that using only a single PCG iteration without any of our
contact handling approaches does not allow elastification of the hat on first contact, which leads to
a loss in momentum.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

1:14 Mercier-Aubin, A.

Table 1. We generated and simulated scenes with varying numbers of elements, and provide the full simulation
times, as well as the simulation times without contacts (NC).

Scene Vertices Elements NC Time
Adaptive(s)

NC Time
Elastic(s)

Time
Adaptive(s)

Time
Elastic(s)

Speedup
Factor

Dancer 2000 3861 289.32 977.24 815.51 3318.06 3.37x
Multi-Spheres 8437 16493 222.13 682.05 3653.78 14230.15 3.07x
Tablecloth 9896 20440 483.23 2433.54 10629.65 34496.75 5.04x
Horizontal Sleeve 2450 4830 79.66 1060.95 10322.95 43116.48 13.31x
Hat 1412 2760 12.98 18.49 28.20 42.04 1.42x
Vertical Sleeve 7777 15488 916.96 5524.75 5722.66 41937.27 6.03x
Rotating Sphere 4602 8932 707.48 1546.10 21398.00 47070.00 2.19x

Our approach is designed to work with any standard collision detection and handling technique.
We have implemented bounding volumes, signed distance functions, and use projected Gauss-Seidel
to solve for contact impulses. We can see from Table 1 that the rigidification has an impact on
collision handling times as it speeds up the assembly of the Delassus operator for a PGS solver.
Other approaches such as that of Verschoor and Jalba [2019] would likely retain similar collision
handling speeds regardless of rigidification.

5 DISCUSSION AND LIMITATIONS
Although our approach is currently efficient for wrinkled, non-deforming parts, our approach lacks
the ability to remesh actively deforming regions. Nonetheless, we believe that adaptive rigidification
of shells could complement remeshing, resulting in an even more efficient oracle by reducing the
size of our linear pass over elements, as well as the coarsening of actively deforming elements in
wrinkle-free areas. Speedups are dependent on the thresholds (level of accuracy), and the dynamics
of the scenes, as opposed to remeshing where the speedups are dependant on the quality of the
coarsening, and the continuous shape of the model. While adaptive rigidification cannot coarsen a
flat actively stretching piece of cloth, remeshing would be able to simulate this deformation with a
low number of degrees of freedom. Likewise, remeshing cannot coarsen dense triangle folds to a
constant number of degrees of freedom as we do when the folds are moving rigidly.
Our approach to handle new contact reduces the likelihood of missing elastification, but some

motions can still be problematic. A slow constant creep type of motion that accumulates over time
while remaining below the elastification threshold would cause deformation on a fully elastic model,
but could not deform a rigidified body. However, such cases are perhaps rare and can otherwise be
addressed by adjusting thresholds or designing new custom solutions.
While not directly related to rigidification, our contact handling is slow for large number of

contacts because the assembly of the Delassus operator creates a bottleneck. Using a contact
handling method like that of Verschoor and Jalba [2019] does not require this assembly and would
greatly speed up the simulations. There is also an opportunity to prune contacts on rigid bodies by
considering only 3 contacts per body, and diffusing the impulses on the rigid body for the oracle’s
elastic contacts to reduce the number of constraints during the time integration. Likewise, the
internal forces of rigidified elements could be cached on rigidification, and rotated with the rigid
body properties to save on the computation of the energy derivatives.

The BFS algorithm to build rigid bodies is the same as the original adaptive rigidification with a
minor modification to sequentially iterate through mixed geometry. Using parallel algorithms like

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

Adaptive Rigidification of Discrete Shells 1:15

the ones described by Zhang et al. [2020] to find connected components would further reduce the
overhead of adaptive rigidification.
Finally, we note that poorly conditioned elements will likely create large approximate changes

in velocity. Thus, an adaptive threshold that considers conditioning could be created to uniformly
set the tolerance across the meshes.

6 CONCLUSIONS
In this paper, we present an extension of adaptive rigidification to target thin shells. By adding a
second rigidification criterion based on the curvature rate, we achieve the benefits of rigidification
with minimal overhead, similar to the tetrahedral version. Our approach leverages computations
from different parts of the simulation, such as the dihedral angles of the bending energy, so as
to reduce redundant work and improve efficiency. To further enhance the performance of the
elastification oracle in the presence of small contact patches, we incorporate a fast contact filter, and
explore other valuable approaches for diffusing contact information during the oracle solve. Finally,
we demonstrate that scaling the per-Newton step system can significantly reduce the condition
number, making it competitive with that of the fully elastic scaled system while also benefiting
from its reduced size.

7 ACKNOWLEDGMENT
This research was funded by the FRQNT Doctoral scholarship 332127. We are grateful to the Fonds
de recherche du Québec for their resources. We acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC) via the Discovery grant program and an
Alliance grant with Symgery.

REFERENCES
Pierre Alliez, Giuliana Ucelli, Craig Gotsman, and Marco Attene. 2008. Recent Advances in Remeshing of Surfaces. Springer

Berlin Heidelberg, Berlin, Heidelberg, 53–82. https://doi.org/10.1007/978-3-540-33265-7_2
Svetlana Artemova and Stephane Redon. 2012. Adaptively Restrained Particle Simulations. Phys. Rev. Lett. 109 (2012),

190201. Issue 19.
David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings of the 25th Annual Conference on

Computer Graphics and Interactive Techniques (SIGGRAPH ’98). Association for Computing Machinery, New York, NY,
USA, 43–54. https://doi.org/10.1145/280814.280821

Jan Bender and Crispin Deul. 2012. Efficient Cloth Simulation Using an Adaptive Finite Element Method. In Virtual
Reality Interactions and Physical Simulations (VRIPhys). Eurographics Association, Darmstadt, Germany, 21–30. https:
//doi.org/10.2312/PE/vriphys/vriphys12/021-030

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of Collisions, Contact and Friction for Cloth
Animation. ACM Trans. Graph. 21, 3 (jul 2002), 594–603. https://doi.org/10.1145/566654.566623

Morten Bro-Nielsen and Stephane Cotin. 1996. Real-time Volumetric Deformable Models for Surgery Simulation using Finite
Elements and Condensation. Computer Graphics Forum 15, 3 (1996), 57–66. https://doi.org/10.1111/1467-8659.1530057
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.1530057

Fehmi Cirak, Michael Ortiz, and Peter Schröder. 2000. Subdivision surfaces: a new paradigm for thin-shell finite-element
analysis. Internat. J. Numer. Methods Engrg. 47, 12 (2000), 2039–2072. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:
12<2039::AID-NME872>3.0.CO;2-1

Eulalie Coevoet, Otman Benchekroun, and Paul G. Kry. 2020. Adaptive Merging for Rigid Body Simulation. ACM Trans.
Graph. 39, 4, Article 35 (2020), 12 pages.

A. R. Curtis and J. K. Reid. 1972. On the Automatic Scaling of Matrices for Gaussian Elimination. IMA Journal of Applied
Mathematics 10, 1 (08 1972), 118–124. https://doi.org/10.1093/imamat/10.1.118

Elliot English and Robert Bridson. 2008. Animating Developable Surfaces Using Nonconforming Elements. ACM Trans.
Graph. 27, 3 (aug 2008), 1–5. https://doi.org/10.1145/1360612.1360665

Kenny Erleben. 2004. Stable, robust, and versatile multibody dynamics animation. Ph. D. Dissertation. University of
Copenhagen.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

https://doi.org/10.1007/978-3-540-33265-7_2
https://doi.org/10.1145/280814.280821
https://doi.org/10.2312/PE/vriphys/vriphys12/021-030
https://doi.org/10.2312/PE/vriphys/vriphys12/021-030
https://doi.org/10.1145/566654.566623
https://doi.org/10.1111/1467-8659.1530057
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.1530057
https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
https://doi.org/10.1093/imamat/10.1.118
https://doi.org/10.1145/1360612.1360665

1:16 Mercier-Aubin, A.

Olaf Etzmub, Michael Keckeisen, and Wolfgang Straber. 2003. A Fast Finite Element Solution for Cloth Modelling. In
Proceedings of the 11th Pacific Conference on Computer Graphics and Applications (PG ’03). IEEE Computer Society, USA,
244.

Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. 2007. Efficient Simulation of
Inextensible Cloth. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26, 3 (2007), to appear.

Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete Shells. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California) (SCA ’03). Eurographics Association,
Goslar, DEU, 62–67.

Eitan Grinspun, Petr Krysl, and Peter Schröder. 2002. CHARMS: A Simple Framework for Adaptive Simulation. ACM Trans.
Graph. 21, 3 (2002), 281–290.

Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sumner, Forrester Cole, Mark Meyer, Tony DeRose, and
Markus Gross. 2014. Subspace Clothing Simulation Using Adaptive Bases. ACM Trans. Graph. 33, 4, Article 105 (jul 2014),
9 pages. https://doi.org/10.1145/2601097.2601160

Xiangmin Jiao, Andrew Colombi, Xinlai Ni, and John C. Hart. 2006. Anisotropic Mesh Adaptation for Evolving Triangulated
Surfaces. In Proceedings of the 15th International Meshing Roundtable, Philippe P. Pébay (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 173–190.

Ladislav Kavan, Dan Gerszewski, Adam W. Bargteil, and Peter-Pike Sloan. 2011. Physics-Inspired Upsampling for Cloth
Simulation in Games. In ACM SIGGRAPH 2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH ’11). Association
for Computing Machinery, New York, NY, USA, Article 93, 10 pages. https://doi.org/10.1145/1964921.1964988

David I.W. Levin. 2020. Physics-based animation lecture 6: Cloth Simulation.
Ling Li and Vasily Volkov. 2005. Cloth Animation with Adaptively Refined Meshes. In Proceedings of the Twenty-Eighth

Australasian Conference on Computer Science - Volume 38 (Newcastle, Australia) (ACSC ’05). Australian Computer Society,
Inc., AUS, 107–113.

Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental Potential Contact. ACM Trans.
Graph. (SIGGRAPH) 40, 4, Article 170 (2021).

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic
Materials. ACM Trans. Graph. 36, 4, Article 116a (jul 2017), 16 pages. https://doi.org/10.1145/3072959.2990496

Charles Loop. 1987. Smooth Subdivision Surfaces Based on Triangles. Ph. D. Dissertation. The University of Utah.
Pierre-Luc Manteaux, François Faure, Stéphane Redon, and Marie-Paule Cani. 2013. Exploring the Use of Adaptively

Restrained Particles for Graphics Simulations. InWorkshop on Virtual Reality Interaction and Physical Simulation, Jan
Bender, Jeremie Dequidt, Christian Duriez, and Gabriel Zachmann (Eds.). The Eurographics Association, Lille, France,
17–24. https://doi.org/10.2312/PE.vriphys.vriphys13.017-024

Alexandre Mercier-Aubin, Alexandre Winter, David I. W. Levin, and Paul G. Kry. 2022. Adaptive Rigidification of Elastic
Solids. ACM Trans. Graph. 41, 4, Article 71 (jul 2022), 11 pages. https://doi.org/10.1145/3528223.3530124

E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. A. Otaduy, and S. Marschner. 2012. Data-Driven Estimation
of Cloth Simulation Models. Comput. Graph. Forum 31, 2pt2 (may 2012), 519–528.

Matthias Müller and Nuttapong Chentanez. 2010. Wrinkle Meshes. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Madrid, Spain) (SCA ’10). Eurographics Association, Goslar, DEU, 85–92.

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans.
Graph. 31, 6, Article 152 (2012), 10 pages.

Tiberiu Popa, Qingnan Zhou, Derek Bradley, Vladislav Kraevoy, Hongbo Fu, Alla Sheffer, and Wolfgang Heidrich. 2009.
Wrinkling Captured Garments Using Space-TimeData-DrivenDeformation. Computer Graphics Forum (Proc. Eurographics)
28, 2 (2009), 427–435.

Xavier Provot. 1995. Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behaviour. In Proceedings of
Graphics Interface ’95 (Quebec, Quebec, Canada) (GI ’95). Canadian Human-Computer Communications Society, Toronto,
Ontario, Canada, 147–154. http://graphicsinterface.org/wp-content/uploads/gi1995-17.pdf

Damien Rohmer, Tiberiu Popa, Marie-Paule Cani, Stefanie Hahmann, and Alla Sheffer. 2010. Animation Wrinkling:
Augmenting Coarse Cloth Simulations with Realistic-Looking Wrinkles. ACM Trans. Graph. 29, 6, Article 157 (dec 2010),
8 pages. https://doi.org/10.1145/1882261.1866183

H. Schmidl and V. J. Milenkovic. 2004. A fast impulsive contact suite for rigid body simulation. IEEE Transactions on
Visualization and Computer Graphics 10, 2 (2004), 189–197.

Rasmus Tamstorf and Eitan Grinspun. 2013. Discrete bending forces and their Jacobians. Graphical Models 75, 6 (2013),
362–370. https://doi.org/10.1016/j.gmod.2013.07.001

Maxime Tournier, Matthieu Nesme, Francois Faure, and Benjamin Gilles. 2014. Seamless Adaptivity of Elastic Models. In
Proceedings of Graphics Interface 2014 (Montreal, Quebec, Canada) (GI ’14). Canadian Information Processing Society,
CAN, 17–24.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

https://doi.org/10.1145/2601097.2601160
https://doi.org/10.1145/1964921.1964988
https://doi.org/10.1145/3072959.2990496
https://doi.org/10.2312/PE.vriphys.vriphys13.017-024
https://doi.org/10.1145/3528223.3530124
http://graphicsinterface.org/wp-content/uploads/gi1995-17.pdf
https://doi.org/10.1145/1882261.1866183
https://doi.org/10.1016/j.gmod.2013.07.001

Adaptive Rigidification of Discrete Shells 1:17

Mickeal Verschoor and Andrei C. Jalba. 2019. Efficient and Accurate Collision Response for Elastically Deformable Models.
ACM Trans. Graph. 38, 2, Article 17 (mar 2019), 20 pages. https://doi.org/10.1145/3209887

Huamin Wang, James O’Brien, and Ravi Ramamoorthi. 2010. Multi-Resolution Isotropic Strain Limiting. ACM Trans. Graph.
29, 6, Article 156 (dec 2010), 10 pages. https://doi.org/10.1145/1882261.1866182

Martin Wicke, Daniel Ritchie, Bryan M. Klingner, Sebastian Burke, Jonathan R. Shewchuk, and James F. O’Brien. 2010.
Dynamic Local Remeshing for Elastoplastic Simulation. ACM Trans. Graph. 29, 4, Article 49 (jul 2010), 11 pages.
https://doi.org/10.1145/1778765.1778786

Yongzhe Zhang, Ariful Azad, and Aydın Buluç. 2020. Parallel algorithms for finding connected components using linear
algebra. J. Parallel and Distrib. Comput. 144 (2020), 14–27. https://doi.org/10.1016/j.jpdc.2020.04.009

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.

https://doi.org/10.1145/3209887
https://doi.org/10.1145/1882261.1866182
https://doi.org/10.1145/1778765.1778786
https://doi.org/10.1016/j.jpdc.2020.04.009

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Simulation of Shells
	3.2 Simulating Coupled Rigid Bodies
	3.3 Time Integration
	3.4 Rigidification
	3.5 Elastification
	3.6 Threshold Selection

	4 Results
	4.1 Speed
	4.2 Conditioning
	4.3 Strain Limiting
	4.4 Oracle

	5 Discussion and Limitations
	6 Conclusions
	7 Acknowledgment
	References

