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Fig. 1. Our algorithm can identify and adaptively rigidify undeforming portions of simulated elastic objects in order to improve performance without sacrificing
visual fidelity. Per-step computation time for this tire simulation, with rubber tread and steel hub, shows a mean performance improvement of 10×, resulting
in a 5× reduction in total simulation time.

We present a method for reducing the computational cost of elastic solid
simulation by treating connected sets of non-deforming elements as rigid
bodies. Non-deforming elements are identified as those where the strain rate
squared Frobenius norm falls below a threshold for several frames. Rigidifi-
cation uses a breadth first search to identify connected components while
avoiding connections that would form hinges between rigid components.
Rigid elements become elastic again when their approximate strain velocity
rises above a threshold, which is fast to compute using a single iteration
of conjugate gradient with a fixed Laplacian-based incomplete Cholesky
preconditioner. With rigidification, the system size to solve at each time step
can be greatly reduced, and if all elastic element become rigid, it reduces
to solving the rigid body system. We demonstrate our results on a variety
of 2D and 3D examples, and show that our method is likewise especially
beneficial in contact rich examples.
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1 INTRODUCTION
Physics-based animation produces complex emergent behavior and
motion from relatively compact physical laws. Prescribing a handful
of physical properties to an object can generate animations of phe-
nomena as wide ranging as realistic dripping honey, to an immense
castle collapsing, to the delightful bounciness of a cartoon character.
In solid mechanics, parameters such as the Young’s modulus

and Poisson’s ratio determine the effective compliance of an ob-
ject relative to its environment. For any finite, realistic choice of
these parameters, there are scenarios during which an object will
drastically deform, and others during which it will move rigidly
through the world. Imagine squishing a sponge in your hand. During
compression the sponge changes shape drastically, but if you swing
your clenched fist, the sponge moves rigidly in its new deformed
state. Complicating things further is the spatially varying nature of
this effect. For large objects, local external forces cause deformation
that quickly decays to rigid motion as distance from the loading
point increases. Despite these effects being well-known, for the
past 40 years, physics-based animation algorithms have forced
practitioners to decide a-priori if an object should be modeled as
a rigid body or a deformable one – regardless of the applied loads
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it may experience. The goal of this work is to free users from this
forced choice.
Simulating large deformations requires a suitably expressive

kinematic map with sufficient degrees-of-freedom to model shape
change. This comes with an unavoidable performance overhead. In
contrast, purely rigid deformation can be represented compactly by
an isometric transformation. This enables fast simulation, meaning
large complicated scenes are often simulated using rigid bodies
due to performance considerations. In doing so, they give up on
potentially interesting behavior due to deformations. Ideally, simula-
tion algorithms should apply the appropriate mapping based on the
physical properties of the system and its underlying interactions,
not based on user intuition. Rigid sections of objects should be
simulated using the compact, performant, rigid body mapping while
parts of the scene undergoing deformation should be upgraded to a
deformable model. We should be able to have our simulated cake
and eat it too.
In this paper we present the first hierarchy-free algorithm for

the elastodynamic simulation of deformable objects that can dy-
namically transition between rigid and deformable kinematic mod-
els at runtime. Our method maintains two dynamically evolving,
spatially varying kinematic maps, one rigid and one deformable.
We introduce a deformation velocity metric that predicts which
parts of an object can be represented as rigid bodies, and there-
fore integrated efficiently using geometric methods, leading to fast
aggregate simulation times for complex scenes. Additionally, we
devise an inexpensive method for estimating which parts of an
object should transition between rigid and deformable states in the
presence of transient forces such as contact and friction. Crucially
we accomplish this without requiring predefined hierarchies or
introducing additional constraints on the geometry or physical
parameters of the simulation.
With our method for on-demand elastification, physics simu-

lation of solid geometry becomes properly input-sensitive. The
rigid/deformable modeling decision becomes a function of physical
parameters and environmental interactions rather than a guess
made prior to runtime. By putting the physics first, our algorithm
reduces user burden, avoids filtering away salient emergent behavior
and expedites computation of results. In what follows we detail
our adaptive approach to the modeling and simulation of elastic,
deformable objects and show that under a number of commonly
encountered scenarios our method yields significant speed-ups over
purely deformable finite element simulations.

2 RELATED WORK
Degree-of-freedom reduction is a common technique for acceler-
ating physics-based animation. Modal analysis [Barbič and James
2005] projects the equations of motion into a reduced linear space
while frame-based approaches [Gilles et al. 2011] replace dense
volumetric discretizations with sparse skinning handles. Finally, nu-
merical coarsening [Chen et al. 2017; Kharevych et al. 2009; Nesme
et al. 2009] allows simulations to produce results, using a low reso-
lution volumetric discretization to produce results commensurate
with a more expensive, high resolution one. While these methods
can produce significant speed-ups, they have two fundamental limi-

tations. First, they are applied during the modeling phase, meaning
they do not and cannot take into account environmental stimulus,
only the geometry and material properties of the model, in isolation.
Second they do not naturally progress to the completely rigid case,
rather they approach it, but remain deformable, always including a
few additional, potentially unnecessary degrees of freedom.
Runtime approaches attempt to modify the number of degrees-

of-freedom as the simulation progresses. The simplest of such ap-
proaches are freezing methods, so named because they deactivate,
or freeze, degrees-of-freedom when they are deemed unnecessary
to evolve the system in time [Artemova and Redon 2012; Manteaux
et al. 2013]. In contrast to these methods, which freeze in the inertial
frame, our approach permits rigid motion of components with
degrees-of-freedom freezing only relative to one another. Freezing
is also popular in rigid body simulations [Erleben 2004; Schmidl
and Milenkovic 2004], and more robust sleeping approaches have
been developed for contacting rigid bodies [Coevoet et al. 2020], but
these do not directly apply to the deformable bodies we study here.
Rather than deactivate degrees-of-freedom entirely, they can

instead be adaptively down sampled. Early variants of this approach
actually worked in reverse – they assume a coarse simulation mesh
which was refined as a pre-process to create a fixed hierarchy [Grin-
spun et al. 2002]. At runtime this hierarchy could be traversed to
locally enhance detail [Debunne et al. 2001]. However the availabil-
ity of a coarse mesh should not be assumed, and it is not always
possible to refine back to the input high-resolution geometry. To
address this problem, fixed hierarchy approaches have evolved to act
on embedded mesh [Nesme et al. 2009] and frame-based [Tournier
et al. 2014] simulations. These approaches use relatively coarse
discretizations for even the finest levels of their hierarchies, meaning
that the full motion of an object can never be resolved. Additionally,
fixed hierarchies limit the location and amount of refinement that
can take place.
Chen et al. [2017] presents a special cases of the hierarchical

approach, using a two-level hierarchy where the root is a rigid
transform [Terzopoulos and Witkin 1988] and the second level is
a hexahedral simulation mesh. They transition to using the rigid
transformation only when elastic potential energy goes to zero,
which misses the opportunity for rigidification in other equilibrium
states (e.g., resting contact). Modal hierarchies have also been ex-
plored [Kim and James 2009; Teng et al. 2015]. These are close in
spirit to our approach but require the precomputation of a modal
basis and can have trouble using the reduced basis in the presence
of large rotational motions. Adaptive remeshing [Narain et al. 2012;
Schreck et al. 2016] combats this issue by using geometric operations
to add and remove degrees-of-freedom from the simulation mesh.
However mesh operations are complex, difficult to implement and
are not typically capable of reducing to pure rigid motion as our
method does.
Our approach is not based on a hierarchy, but on connected

components. Lack of a fixed hierarchy gives us maximum flexibility
in terms of when to treat parts of an object as rigid or deformable.
This means our algorithm can collapse an arbitrarily complex de-
formable object to a rigid body if permitted. While methods for
mixing simulations of rigid and elastic parts have been previously
proposed [Jansson and Vergeest 2003; Lenoir and Fonteneau 2004;
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Algorithm 1:Main loop
𝐽𝑐 , Φ← Find contacts // §3.3

𝜆←WarmStart, approximate for new contacts // §3.3

Δ ¤𝒙approx, ¤𝐸approx← QuickSolve // §3.5
¤𝐸 ← Compute strain rates // §3.4

BFS to identify rigid components // §3.4

𝑀R ← Compute rigid properties // §3.4

Δ ¤𝒙A← LDLT Solve // Eq. 11

Δ ¤𝒙𝑐 ← Contact Solve // Eqs. 14-15

Update velocities and positions

Yang et al. 2010], we introduce a relative deformation metric which
allows rigidification of regions of an object that are deformed but
moving rigidly, as well as an efficient way to elastify local parts of
rigid sections in response to deformation caused by external loads
including contact and friction. These contributions, taken together
result in an adaptive scheme for on-demand input-sensitive elasticity
that is both more flexible, and more performant than prior art.

3 ELASTIC AND RIGID SIMULATION
We will start with a brief review, describing how we set up our
elastic finite element model simulation. We use tetrahedral meshes
with linear shape functions and the standard semi-implicit backward
Euler approach for numerical integration [Baraff and Witkin 1998].
Following this, we will introduce how the formulation changes
when portions of the elastic solid are rigid, and how we handle
contact. This will lead us to the problem of identifying what parts
of the mesh should be rigid, and when rigid parts should become
elastic again, which we will describe in Sections 3.4 and 3.5. An
overview of the main loop of our method is shown in Algorithm 1.

3.1 Simulating Finite Elements
We define matrix 𝐵 such that the deformation gradient may be
computed as 𝐹 = 𝐵 𝒙 , where 𝒙 ∈ R3𝑛𝑣 contains the positions of
the 𝑛𝑣 vertices of the finite element model. While the deformation
gradient of each element is a matrix, we pack column vector 𝐹 ∈
R9𝑛𝑒 by stacking vertically the deformation gradients of all 𝑛𝑒
elements in column order. Using tetrahedral elements and barycen-
tric interpolation as a shape function, the deformation gradient is
constant across each element (otherwise, 𝐵 can be seen as computing
𝐹 at quadrature points). We compute the infinitesimal elastic energy
𝜓 as a function of the deformation gradient 𝐹 . For a given element
𝑖 with rest volume 𝑉𝑖 and deformation gradient 𝐹𝑖 we compute
element-integrated PK1 stress and stiffness

𝑃𝑖 = −𝑉𝑖
𝜕𝜓

𝜕𝐹𝑖

𝑇

, (1)

𝐶𝑖 = −𝑉𝑖
𝜕2𝜓

𝜕𝐹 2
𝑖

𝑇

. (2)

We assemble the vector 𝑷 ∈ R9𝑛𝑒 containing the element-integrated
stress of all𝑛𝑒 elements in column order, and the sparse block matrix
𝐶 with the 9-by-9 blocks 𝐶𝑖 , which permits us to write the nodal

forces and sparse stiffness matrix,

𝒇 = 𝐵𝑇 𝑷 , (3)

𝐾 = 𝐵𝑇𝐶𝐵, (4)

where 𝒇 ∈ R3𝑛𝑣 and 𝐾 ∈ R3𝑛𝑣×3𝑛𝑣 .
Thus, the system we solve for semi-implicit backward Euler

integration is

(𝑀 − ℎ𝐷 − ℎ2𝐾)︸               ︷︷               ︸
𝐴

Δ ¤𝒙 = ℎ(𝐷 ¤𝒙 + 𝒇 + ℎ𝐾 ¤𝒙 + 𝒇ext), (5)

where we use a lumped mass matrix 𝑀 , Rayleigh damping 𝐷 =

𝛼0𝑀 + 𝛼1𝐾 , and 𝒇ext are external forces such as gravity and user
interaction forces (contact forces are discussed in Section 3.3). We
use an LDLT factorization of matrix 𝐴 to solve for the change in
velocities Δ ¤𝒙 and then update the velocities and subsequently the
positions with the updated velocities.

For heterogeneous materials, we build the damping matrix 𝐷 as a
sum of a mass damping matrix𝑀𝑑 and stiffness damping matrix 𝐾𝑑 .
We build the stiffness damping matrix with 𝛼1 weighted diagonal
blocks, that is, 𝐾𝑑 = 𝐵𝑇𝐶𝑑𝐵 with each block of 𝐶𝑑 being 𝛼1𝑖 𝐶𝑖 .
For the Rayleigh mass damping matrix we lump the mass damping
property in the sameway that we lump themass. That is, for element
𝑖 with density 𝜌𝑖 we distribute 1/4𝛼0𝑖 𝑉𝑖 𝜌𝑖 to each vertex making
up the tetrahedral element.

3.2 Mixing Rigid and Elastic DOFs
During the simulation of an elastic solid, there may be extended
periods of time where portions of the model are moving rigidly.
This occurs trivially when an object is at rest in static equilibrium,
but can also happen with non-zero linear and rotational velocity
during flight or sliding contact. We can treat as rigid the regions of
a model that have a zero strain rate for a period of time. While we
discuss the rigidification process and related issues in Section 3.4,
we will first present how we set up the equations of motion for a
mixed elastic and rigid simulation.
For simplicity, let us consider the case with a single rigid body.

Let R be the set of vertex indices that make up the rigid body. The
simulation state of the body will consist of a position 𝑝 and an
orientation 𝑅 ∈ 𝑆𝑂 (3) along with a linear and angular velocity
𝜙 = (𝑣𝑇𝜔𝑇 )𝑇 . Following the form of Equation 5 we can write the
rigid body equation of motion as

𝑀RΔ𝜙 = ℎ(𝑐 (𝜙) +𝑤ext), (6)

where 𝑀R is the 6-by-6 mass matrix with rotational inertia sub-
matrix rotated into the world aligned frame given the body’s current
orientation, 𝑐 (𝜙) are the velocity-depended rigid body torques, and
𝑤ext are external forces such as gravity and user interaction.

When a portion of the elastic mesh is made rigid, we store the
positions of vertices making up the rigid body in the rigid body
frame. Letting 𝑟𝑖 for 𝑖 ∈ R be the rigid vertex positions in coordinates
of the rigid body frame, we can compute the positions and velocities
of these vertices in the world frame as 𝑥𝑖 = 𝑅 𝑟𝑖 + 𝑝 and ¤𝑥𝑖 =

−(𝑅𝑟𝑖 ) × 𝜔 + 𝑣 . This second expression can be written instead as a
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matrix product,

¤𝑥𝑖 =
[
𝐼 −(𝑅 𝑟𝑖 )×

]︸            ︷︷            ︸
Γ𝑖

[
𝑣

𝜔

]
, (7)

where (·)× denotes construction of the 3-by-3 cross product operator.
Furthermore, we can now write the velocity of all vertices in the
finite element model as a product of a matrix 𝐺 with velocities of
our active (elastic and rigid) degrees of freedom, ¤𝒙A,

¤𝒙 =

[
𝐼 0
0 Γ

]
︸  ︷︷  ︸

𝐺

[
¤𝒙A
𝜙

]
︸︷︷︸
¤𝑥A

. (8)

Here, 𝑥A are the active elastic vertices (i.e., those which are not part
of a rigid body), and for simplicity we assume that these vertices
have lower indices and are copied by the identity block of 𝐺 , while
the Γ block is a stack of all Γ𝑖 for 𝑖 ∈ R. When there are many rigid
bodies, the lower part of matrix 𝐺 and vector ¤𝒙A grow accordingly.
With some of the elements being simulated as a rigid body, we

only need to do the elastic solve for the set of elements which are
still elastic. Let E be the set of elastic element degrees of freedom
indices, and notice that we can compute the deformation gradient
of only these elements as the product 𝐹E = 𝐵E𝐺𝒙A, where matrix
𝐵E consists of only those rows of 𝐵 that correspond to the elastic
elements. The elastic force and stiffness for active degrees of freedom
can therefore be written

𝒇A = 𝐺𝑇𝐵𝑇E𝑷E , (9)

𝐾A = 𝐺𝑇𝐵𝑇E𝐶E𝐵E𝐺, (10)

where we only need to use the elastic element subset E of element-
integrated stress and stiffness. Notice that the force 𝒇A and stiffness
𝐾A include the rigid degrees of freedom because 𝐺 provides the
kinematic mapping for velocities of vertices that are on the boundary
between a rigid body and the elastic elements.

With careful bookkeeping, the Γ block in 𝐺 need only deal with
those rigid nodes that are on the boundary of an elastic element. In
practice, we find it simpler to compute the product 𝐵E 𝐺 without
removing those rigid vertices that are not on the boundary with an
elastic element.
Before we assemble the mixed elastic and rigid equations of

motion, observe that the mass term in the Rayleigh damping must
be included as a damping force on the rigid degrees of freedom. The
rigid body damping force is computed as Γ𝑇𝑀𝑑RΓ 𝜙 , and we note
that this will damp both linear and rotational motion of the rigid
body. The Rayleigh damping on both elastic and rigid degrees of
freedom will therefore have a mass damping component 𝑀𝑑A =

𝐺𝑇𝑀𝑑𝐺 . Rigid motions are in the null space of the stiffness matrix,
thus the stiffness term in Rayleigh damping does not contribute
to damping of the rigid degrees of freedom. The active elastic
degrees of freedomwill be dampedwith the stiffness dampingmatrix
𝐾𝑑A = 𝐺𝑇𝐾𝑑𝐺 . This allows the application of stiffness damping
specifically to the deformable elements.

Thus, the system we solve for semi-implicit backward Euler
integration of the mixed elastic rigid system is

𝐴AΔ ¤𝒙A = ℎ

(
𝐷A ¤𝒙A + 𝒇A + ℎ𝐾A ¤𝒙A +

(
𝒇Aext

𝑐 (𝜙) +𝑤ext

))
, (11)

where 𝐴A = 𝑀A − ℎ𝐷A − ℎ2𝐾A, with 𝑀A being block diagonal
containing𝑀A and𝑀R. Just as before, we use LDLT factorization of
𝐴A to solve Δ ¤𝒙A. However, this system can bemuch smaller than the
original fully elastic system and consequently much faster to solve.
Furthermore, in the case of a system in elastic static equilibrium
(whether the solid is stationary or moving rigidly), it all reduces to
solving Equation 6 for the rigid body motion alone.

Once we have a solution for Δ ¤𝒙A, we update the elastic and rigid
position level variables with the updated velocities, where we use
Rodrigues’s formula [Murray et al. 1994] to turn angular velocities
over a time step into an incremental rotation matrix 𝑅 to update
rigid body positions.

3.3 Contact Handling
We use signed distance computations for collision detection and
generate a contact at every boundary vertex of one mesh that ends
up inside another mesh (we do not process self-contact). The contact
is defined by the interpenetrating vertex and the location of the
closest point on the surface of the other mesh. Using the barycentric
coordinates of the closest point, we create three rows in the contact
Jacobian matrix 𝐽𝑐 for each contact (one for the contact normal and
two tangent directions).

We use projected Gauss-Seidel (PGS) to solve for contact impulses
𝜆, and in turn, a velocity update due to contact forces to compute
the velocity at the next time step. Let us consider the update for a
fully elastic system:

¤𝒙+ = ¤𝒙 + Δ ¤𝒙 +𝐴−1 𝐽𝑇𝑐 𝜆︸   ︷︷   ︸
Δ ¤𝒙𝑐

. (12)

We multiply by 𝐽𝑐 to compute the slip and separation of contacts at
the next time step, and rearrange to form the system

𝐽𝑐𝐴
−1 𝐽𝑇𝑐︸    ︷︷    ︸
𝐻

𝜆 = − 𝐽𝑐 ( ¤𝒙 + Δ ¤𝒙)︸       ︷︷       ︸
𝑏

. (13)

Solving this system with PGS, clamping the normal and tangen-
tial components of 𝜆 to their respective bounds at each iteration,
provides a solution to the frictional contact problem:

𝜆+𝑖 ← 𝜆𝑖 − (𝑏 + 𝐻𝑖 𝜆)/𝐻𝑖𝑖 , (14)

𝜆+𝑖 ← max
(
min

(
𝜆+𝑖 , 𝜆𝑖MAX

)
, 𝜆𝑖MIN

)
, (15)

Bounds 𝜆𝑖MIN and 𝜆𝑖MAX are zero and positive infinity for normal
direction constraints, while for tangent directions the bounds are
set based on the current normal force and Coulomb coefficient of
friction. While the PGS inner loop is fast, and depends only on the
number of contacts, there is a cost to assembling𝐻 . We use the LDLT
factorization of 𝐴 to assemble 𝐻 , and that cost is greatly reduced
as larger portions of the elastic solid get mapped to rigid bodies.
In a mixed elastic and rigid system, the velocity update Δ ¤𝒙A𝑐 for
active degrees of freedom due to frictional contact uses the smaller
system matrix 𝐴A and a smaller Jacobian 𝐽A𝑐 = 𝐽𝑐𝐺 relating contact
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velocities with only the active degrees of freedom. As such, the
contact solve greatly benefits from the smaller matrices that arise
when large portions of the elastic solid are rigidified.

We use Baumgarte stabilization [Baumgarte 1972] to deal with
interpenetration that arises on collision and at resting contacts. We
do this by setting 𝑏 = 𝐽𝑐 ( ¤𝒙 + Δ ¤𝒙) + 𝑘𝑏Φ in Equation 13 where 𝑘𝑏 is
the Baumgarte feedback coefficient and Φ contains the constraint
violations (penetration at each contact). We include a small amount
of compliance to maintain an invisible amount of interpenetration,
which is helpful for warm startsing the PGS solve. We do this by
modifying the Lagrange multiplier solve in Equation 14 to be 𝜆+

𝑖
←

(𝜆𝑖𝐻𝑖𝑖 − 𝑏 + 𝐽𝑐𝑖 Δ ¤𝒙𝑐 )/(𝐻𝑖𝑖 + 𝛾), for compliance 𝛾 . We typically set
𝛾 = 10−3 and 𝑘𝑏 = 0.2/ℎ for rapid convergence of interpenetration
values (see also [Smith et al. 2005]).

We always warm-start the PGS solve with 𝜆 values of contacts
that existed at the previous time step. This is important for more
than PGS convergence because it plays an important role in the
elastification process. When an elastic object is in static resting
contact, we require the contact solve on the rigid system to produce
the same forces as the contact solve with elastic elements. While
many different contact solutions are feasible for a rigid body, most
of these, if applied to the elastic system, would lead to a dynamic
deformation and confuse our elastification oracle (see Section 3.5).
At rest, the compliant contact will have normal interpenetration
proportional to the normal contact force, 𝜆𝑖 = 𝑘𝑏

𝛾 Φ𝑖 for constraint
𝑖 in the normal direction, regardless if solving for a fully elastic or
fully rigid object.

Other contact solvers can also be used, for instance, penalty based
methods would also respect our requirement of matching rigid and
elastic contact forces.We also note that other constraint stabilization
approaches can be used, for instance the post-step of Cline and Pai
[2003], provided compliance is still included as a regularization
to ensure that the interpenetration records the force distribution
desired by the full elastic solve.

3.4 Rigidification
Identifying the portions of an elastic solid that can be simulated as
a rigid body is relatively easy. If the rotationally invariant Green
strain tensor 𝐸 = 1

2 (𝐹
𝑇 𝐹 − 𝐼 ) remains constant for a period of time,

then we allow the element to become rigid. In our method, we set
a threshold 𝜏𝑅 based on the squared Frobenius norm of the strain
rate, which is much like setting a speed limit on the slowest elastic
deformation that we will simulate. The threshold is meaningful, easy
to set, and works well for lively elastic systems, but may require
low values for highly overdamped systems that only move slowly to
static equilibrium. We flag elements as ready to become rigid if the
norm is less than the set threshold for a given number of simulation
steps (3 to 5 in our examples). Requiring the strain rate to stay below
for a number of simulation steps prevents premature rigidification
(for example, at the moment of maximum deformation in a vibrating
cantilever).
While we could use 𝐹 = 𝐵 𝒙 and ¤𝐹 = 𝐵 ¤𝒙 to compute

¤𝐸 =
1
2

(
¤𝐹𝑇 𝐹 + 𝐹𝑇 ¤𝐹

)
, (16)

Algorithm 2: Identify a new rigid body by greedy connected
component BFS. Called for all elements flagged as rigid.
Data: element 𝑒 flagged rigid, rigid body index 𝑗 to assign.
Result: number of elements in the new rigid component

connected to 𝑒 , or zero if no rigid body can be
formed.

if 𝑒.visited then
return 0 // already in a rigid body

end
𝑄.enqueue(𝑒)
𝑐 ← 0 // initialize count

while |𝑄 | > 0 do
𝑒 ← 𝑄.dequeue
𝑒.visited← true
if any vertex of 𝑒 already assigned to a body then

continue // avoid hinges

end
𝑒.rigidID← 𝑗 // assign element to rigid body

𝑐 ← 𝑐 + 1
for vertex 𝑣 in element 𝑒 do

𝑣 .rigidID← 𝑗 // assign vertex to rigid body

end
S ← unvisited & flagged-rigid face-neighbors of 𝑒
𝑄.enqueue(S)

end
return 𝑐

this does not produce zero strain rate for rotational motion. The
velocity used to step elastic node positions to a rotated position does
not correspond to an instantaneous rigid rotational velocity, and
¤𝐸 will contain non-zero eigenvalues indicating instantaneous com-
pression. Instead, for time step 𝑘 , we compute the finite difference

¤𝐸𝑘 =
𝐸𝑘 − 𝐸𝑘−1

ℎ
, (17)

ignoring rotation by comparing strain in material space.
Each element of the mesh has a Boolean rigid property that we

set when it is flagged for possible rigidification, that is, based on
having ∥ ¤𝐸𝑘 ∥2fro below threshold for several time steps. Likewise,
elements that are already rigid will also have the rigid property set
(unless it is flagged for elastification, see Section 3.5). If the rigid
properties are unchanged from the previous time step (and none
have been identified for elastification), then the current set of rigid
bodies is left unchanged. Otherwise, we must recompute the set of
rigid bodies from connected components of elements flagged rigid.
Computing connected components and rigid bodies has linear

time complexity. Each element and each vertex has a rigidID prop-
erty to identify which rigid body it is part of (if any), and all are
initially assigned -1 (i.e., none). We then use a breadth first search
(BFS) to construct a connected rigid component for every element
which is flagged for rigidification. We use an adjacency graph
for tetrahedral elements with shared faces (or with shared edges
for triangle elements in 2D simulations). While each connected
component forms a rigid body in our simulation, we must be careful
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A B

Fig. 2. Orange regions show rigid bodies. If the red triangle is a rigid
candidate, it must not become part of body B as the red adjacent vertex
already belongs to body A. Otherwise, bodies A and B would share the red
vertex and require a hinge constraint for correct motion.

that different components do not share vertices. A shared vertex
between two rigid components require a spherical joint constraint
(similarly a shared edge would require a hinge constraint). Figure 2
shows an example of this in a 2D simulation, where a shared vertex
would require a hinge constraint to keep the shared vertex at the
same location. Thus, the BFS in Algorithm 2 includes a greedy vertex
assignment and a vertex check to avoid hinge creation.

Once we have identified the connected components and the total
number of rigid bodies, we then do a final linear pass over all
vertices to compute the properties and state of each rigid body:
center of mass 𝑝 , linear and rotational mass matrix𝑀R, linear and
angular velocity 𝜙 . The orientation 𝑅 of the bodies are set to be
the identity, and the linear and angular velocity are computed such
that the linear and angular momentum about the center of mass,
𝑀R𝜙 , matches that of elastic degrees of freedom. If an object is
moving rigidly, rigidification exactly preserves momentum. We lose
momentum associated with non-rigid motion, but this is small due
to our thresholds being conservative.

3.5 Elastification
The rigid parts of an elastic solid must be able to become elastic again
when necessary. Tractions on the surfaces of the rigid regions may
hold the elastic material within a rigid region in static equilibrium,
or may not change enough (be large enough) to produce a noticeable
deformation in the case of a very stiff elastic region. However,
tractions can change, for instance, with the arrival of a traveling
elastic wave, and this should cause rigid elements to become elastic
again. Similarly, changing contact forces or new collisions should
also cause elastification.

Ideally wewould like to have an oracle that has low computational
cost and can exactly identify only those elements that need to
become elastic. However, the true solution requires a full solve to
compute the strain rate of the full elastic system given the current
state (position, velocity, contacts). Instead we propose a quick solve
to inexpensively compute an approximate change in the velocities
of all vertices, Δ ¤𝒙approx, from which we can identify elements to
make elastic before solving the system at a given time step. The key
observation here is that the quick solve does not need to provide
an accurate solution; it only needs to identify when rigid elements
should become elastic.

We choose conjugate gradient for the quick solve. While the resid-
ual does not decrease monotonically, every iteration of conjugate
gradient does reduce the error, and we can avoid the costly step of
assembling the matrix 𝐴 for the full elastic system. Preconditioning

is essential, otherwise each iteration only propagates information be-
tween neighbours following the sparsity structure of𝐴 (for instance,
an impulse at one vertex will only be able to influence the Δ ¤𝒙approx
of that vertex and adjacent vertices with only one multiplication by
𝐴). Diagonal Jacobi conditioning, while meeting our requirement of
low computational cost, does not alleviate this problem. In contrast,
an incomplete Cholesky factorization is a good choice because the
forward and backward substitution provides an excellent opportu-
nity for an impulse at one vertex to influence Δ ¤𝒙approx at distant
vertices, even with only one iteration of conjugate gradient (see
Figure 8 in Section 4).
The system matrix in Equation 5 changes on each time step

because the stiffness is dependent on the current state. Recomputing
the preconditioner, even periodically [Courtecuisse et al. 2010],
is costly. We neither want to incur the cost of the incomplete
factorization on each quick solve, nor the cost to assemble the
system matrix for just one multiplication. Instead we precompute
the incomplete factorization of the constant Hessian approximation
based on the mesh Laplacian as proposed by Liu et al. [2017]. With
a suitable drop tolerance, we find that the incomplete factorization
is both inexpensive, having a number of non-zeros similar to 𝐴, and
performs very well in our quick solve (i.e., predicting elastification),
even with only one iteration of conjugate gradient. Furthermore,
we do not observe any noticeable difference in the predictive power
when using the full Cholesky decomposition of the fixed precondi-
tioner. In contrast, while similar in cost to using a drop tolerance, we
do not see the same performance with no-fill incomplete Cholesky
or no-fill modified incomplete Cholesky, regardless the permutation
of variables (alternative minimum degree, reverse Cuthill-McKee,
or nested dissection).
The quick solve in all our examples uses a drop tolerance of

10−6, a nested dissection permutation, and a single iteration of
conjugate gradient without assembly of𝐴 to solve the full system in
Equation 5. The quick solve is done independently on each distinct
elastic objects, irrespective of contacts. For gravity forces, We note
that splitting is generally beneficial, especially in scenarios involving
contact. That is, we update velocities based on gravity prior to
the quick solve, rather than asking our single step preconditioned
conjugate gradient to deal with these forces on the right hand side
of the equation.
We have considered alternatives for the quick solve oracle. For

instance, Gauss-Seidel iteration is effective for merging and splitting
rigid bodies [Coevoet et al. 2020], and a careful ordering provides
good propagation of information for correct treatment of impacts.
But Gauss-Seidel is a poor choice for elastic material without addi-
tional mechanisms for long range information exchange [Kim et al.
2012]. While other alternatives may be an interesting avenue for
future work, we believe we have found a good balance of simplicity
and speed with our current solution.

3.5.1 Contacts. We take contact forces into account in the quick
solve by using the contact forces from the previous time step. Recall
that we use a warm start for the contact solve in Section 3.3. We
include these warm start contact forces as explicit external forces
in the quick solve by adding 𝐽𝑇𝑐 𝜆 as a known quantity to the right
hand side of Equation 5.
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Table 1. Speedup for different examples, and the parameters used: rigidification and elastification thresholds 𝜏𝑅 and 𝜏𝐸 , time step ℎ, Rayleigh parameters 𝛼0
and 𝛼1, Young’s modulus 𝐸, Poisson’s ratio 𝜈 , and number of tetrahedra #𝑇 . All material energies in these specific scenes are neo-Hookean. Comparing the
mean of per-frame speedup to the total speedup, we can see if the improvement in computation time is localized to specific frames or distributed over the full
scene. For instance, the blob has big speedups at the start and end of the simulation, while the forest has a constant speedup. No-contact (NC) total and mean
speedups show values computed without counting the contact solve time and demonstrate that our choice of contact solver does not exaggerate the benefit of
adaptive rigidification. In all examples, we see a significant increase in performances, even in highly deforming scenes with non-localized deformations.

Sim Adaptive
Time (s)

Default
Time (s)

Speedup
Total

Speedup
Mean

Speedup
NC Total

Speedup
NC Mean

𝜏𝑅 𝜏𝐸 ℎ Objects 𝛼0 𝛼1 𝜈 𝐸 #𝑇

octopus 175.57 754.03 4.30 5.81 4.29 7.00 1e-5 1e-4 1e-2 octopus 1e-4 1e-1 0.30 5e3 6170
blob 1876.40 3915.30 2.09 9.10 1.81 5.74 1e-5 1e-4 1e-2 blob 1e-3 1e-2 0.22 5e3 6386

tire 1e-5 5e-2 0.30 3e3
wheel 258.21 2966.80 11.49 16.43 9.74 12.39 5e-4 5e-3 1e-3

rim 1e-5 2e-1 0.40 1e6
15797

pine tree 1e-5 1e-2 0.37 2e5
other tree 1e-5 7e-2 0.37 7e5
baseball bat 1e-4 1e-1 0.37 5e4

forest 96.56 800.82 8.29 9.24 8.27 9.21 5e-3 5e-2 5e-3

leaves 1e-4 1e-4 0.37 7e5

56818

red pills 1e-5 5e-2 0.35 5e4
pachinko 347.18 3803.20 10.96 13.24 5.23 5.63 7e-3 7e-2 1e-2

white pills 1e-5 1e-1 0.35 5e3
39808
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Fig. 3. Per-frame speedup factors for blob, wheel, forest, octopus, and pachinko. Using conservative elastification and rigidification thresholds, we can obtain
very accurate simulations in reduced computation time. Adaptive rigidification works for collision, rotation, frictional contact, and proves a large benefit in big
scenes with local deformations, such as forest, where it is possible to elastify individual trees as needed. The green line in each plot shows mean speedup.

New contacts pose a slightly harder problem. We handle new
contacts by conservatively approximating the forces necessary to
resolve these contacts. Just like warm started contacts, we include
approximate contact forces for these new contacts on the right hand
side of Equation 5. We treat new contacts as bilateral constraints,
thus, with the new-contact Jacobian 𝐽𝑐𝑛 , we can write the KKT
system (

𝐴 𝐽𝑇𝑐𝑛
𝐽𝑐𝑛 0

) (
Δ ¤𝒙approx
𝜆𝑛

)
=

(
𝑧

−𝐽𝑐𝑛 ¤𝒙

)
, (18)

where 𝑧 is the right hand size of Equation 5 along with explicit warm
started contacts. Forming the Schur complement gives

𝐽𝑐𝑛𝐴
−1 𝐽𝑇𝑐𝑛𝜆𝑛 = 𝐽𝑐𝑛𝐴

−1𝑧 + 𝐽𝑐𝑛 ¤𝒙, (19)

which will be a small system for a small number of contacts. The
complication here is 𝐴−1, and recall that the main simulation loop
will only compute the LDLT factorization of the elastic-rigid sys-
tem matrix 𝐴A, as opposed to the full elastic 𝐴. In the interest of
having the fastest possible conservative solution, we assume the
new vertices are isolated and uncoupled, and solve for their contact
forces independently using an approximation of 𝐴−1 consisting of
precomputed diagonal blocks (i.e., we disregard the implicit stiffness
coupling), computed for the rest configuration. When many new
contacts form simultaneously, for instance, a large contact patch

forming on impact, we will overestimate the contact force due to
missing coupling terms. But this will simply leads to a larger quick
solve Δ ¤𝒙approx solution, and in turn a larger region of elements will
be conservatively converted to elastic for solving the next time step.
In contrast, when new contacts form in isolation, for instance when
a contact patch grows to include a new vertex, we will obtain an
accurate estimate of the contact force.
Finally, with old warm-started and new approximate contact

forces in account, a single iteration preconditioned conjugate gra-
dient solve provides Δ ¤𝒙approx, which we combine with the current
state 𝒙 to compute 𝐹 = 𝐵 𝑥 and ¤𝐹 = 𝐵 ( ¤𝑥 + Δ ¤𝒙approx), and in
turn, the approximate strain rate ¤𝐸approx using Equation 17. Every
element that has ∥ ¤𝐸approx∥2fro exceeding a elastification threshold 𝜏𝐸
is flagged for elastification. During the BFS described in Section 3.4,
this can cause the outer layers of a rigid body to become elastic
again, or can even break a rigid body into multiple components.
It is the difficulty of tracking fragmentation of rigid bodies during
elastification that motivates our strategy of recomputing the rigid
bodies when there is a change. We briefly discuss incremental
approaches in future work (see Section 5).
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(a) Elastification threshold (b) Damping 𝛼1 (c) Resolution vertices (d) Young’s modulus
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Fig. 4. (a) The rigidification threshold decides when rigid bodies are created, but it is the elastification threshold which is critical for deciding what regions
will stay rigid. Lower values provide simulations that more faithfully reproduce the fully elastic behaviour, but at greater cost. (b) Rigidification takes place
faster when there is higher damping in the simulation scenario, leading to greater speedups. (c) We observe very similar rigidification patters independent
of the resolution of the mesh, while very coarse meshes rigidify more quickly because of resolution dependent stiffness and numerical damping. (d) Lower
stiffness leads to larger and longer lived oscillations, while the damping in stiffer examples has them come to rest and rigidify earlier.

4 RESULTS
Table 1 shows parameters and performance measurements for all
examples in the paper. Simulations were carried out on a Windows
10 PC using an Intel Core I7-6700K processor, with 64 GB of DDR3
RAM. Both the adaptive and non-adaptive simulations are primarily
implemented in MATLAB, with performance critical components
implemented in C++. We use GPToolbox [Jacobson et al. 2021] for
some geometry processing and simulation specific functionality.

Our adaptive method is faster than its non-adaptive counterpart
in all cases, both in terms of total simulation time andmean improve-
ment in per-timestep computation time. The maximum performance
improvement is approximately one order of magnitude in both
cases (Table 1). Figure 3 shows detailed per-timestep speedups for
many of our simulations which demonstrates that even in the worst-
case, the adaptive code offers equivalent performance to the non-
adaptive setup, and is often many times faster.
Our method is compatible with standard hyperelastic material

models. We use Saint-Venant Kirchoff, neo-Hookean, and corota-
tional energies in our simulator. The examples we show in this paper
use StVK for 2D scenes and neo-Hookean for 3D scenes. While all
of our examples use semi-implicit backward Euler integration (i.e.,
backward Euler on the linearized system), it is straightforward to
use a full Newton solve with line search.

4.1 Threshold Selection
Selecting a threshold for rigidification is not difficult, and is largely
a question choosing a trade-off between error and speed. However,
a large threshold will lead to large errors; a good choice is crucial
so as not to generate visual artifacts.
The square of the Frobenius norm provides an upper bound on

the sum of squared eigenvalues of the strain rate. The eigenvalues
correspond to stretch rates, which provides intuition. For example,
a rigidification threshold of 𝜏𝑅 =1e-4, can be thought of as letting
material become rigid if it is deforming at slower than 1% per second.
This can be a good threshold for many scenes involving damped
oscillations, and recall that making a portion of the mesh rigid does
not prevent it from quickly become elastic again.

Figure 5 shows a clear relationship between between error and
speed in the simulation of a 2D cantilever for different choices of 𝜏𝐸
with 𝜏𝑅 = 10−1𝜏𝐸 . The test scenario involves the under damped
cantilever falling under gravity, visually coming to rest after a
period of damped oscillation, and then reacting to a scripted force
applied to its free end (see video). The error is computed as the
magnitude of the maximum displacement of any vertex at any time
from the fully elastic simulated trajectory, and is normalized by
the length of the cantilever. We observe a maximum speedup with
10% max error above 𝜏𝐸 equal to 1, but this threshold setting is a
poor choice because the cantilever simply remains rigid for the full
simulation. In contrast, setting 𝜏𝐸 = 10−5 leads to a maximum error
of approximately 0.1% in the simulation trajectory with a speedup
of 1.7 times. This modest speedup comes from the fact that this
is a simple 2D example with only 2739 triangular elements, while
fine meshes in 3D lead to the more impressive speedups seen with
other examples in this paper. A relationship between error and
speedup is also observable in richer scenes. Figure 7 shows that the
wheels using more conservative thresholds fall on the same side
at approximately the same time while featuring good rigidification
behavior.
While the rigidificaiton threshold needs to be high enough to

let elastic elements become rigid, it is ultimately the elastification
threshold that determines the behavior. If the elastification threshold
𝜏𝐸 is set too low then it will prevent the formation of any rigid bodies,
while if it is set too high then the mesh can lock in a state far from
a static equilibrium. This can be seen at top left of Figure 4 for the
cantilever with 𝜏𝑅 =1e-3 which stops oscillating too early (see also
the supplementary video).

Recall that the quick solve provides only an approximate predic-
tion of the strain rate, and in our experience the solutions are always
an overestimate. Intuition can come from observing the evolution
of ¤𝐸 and ¤𝐸approx histograms during a simulation (see Figure 6). To
account for the quick solve error, we typically set the elastification
threshold to be one or two orders of magnitude higher than the
rigidification threshold.

ACM Trans. Graph., Vol. 41, No. 4, Article 71. Publication date: July 2022.



Adaptive Rigidification of Elastic Solids • 71:9
lo

g 
m

ax
 e

rr
or

in
ve

rs
e 

sp
ee

du
p 

fa
ct

or

-5 -3 -1-7-9

-5

-3

-1

0.2

0.4

0.6

0.8

1

-4

-2

log𝜏𝐸

Fig. 5. Cantilever max vertex error (measured relative to cantilever length),
and inverse speedup factor (lower is better), for a varying range of
elastification thresholds and 𝜏𝑅 = 10−1𝜏𝐸 .
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Fig. 6. Animated histograms (see video) of elastic element strain rate (left)
and rigid element approximate strain rate from the quick solve (middle)
provide intuition about simulation behavior for given thresholds.

Figure 4a shows effect of different elastification thresholds with
𝜏𝑅 = 10−2𝜏𝐸 . High thresholds give premature rigidification and
a large error, while 𝜏𝐸 = 10−5 and lower match the fully elastic
simulation. Our method accounts for varying material parameters
because rigidification only depends on the strain rate (it is agnostic
to the selection of parameters, as well as the choice of elastic energy
and damping model). Increasing the damping (Figure 4b) or stiffness
(Figure 4d), causes the simulated beam to rigidify more quickly.
Finally, notice that similar rigidification regions form in meshes
at different resolutions (Figure 4c), while an extremely low resolu-
tion mesh undergo rapid rigidification due to discretization-based
numerical stiffening.

We observe that geometry can influence our threshold selection.
For instance, geometry with long thin parts may benefit from a
lower threshold to better capture global behavior (e.g., octopus,
𝜏𝑅 = 5e-7). Likewise, we may choose a lower threshold when small
local details are important (e.g., forest, 𝜏𝑅 = 5e-5).

4.2 Example Simulations and Features
Our method supports local elastification and rigidification in re-
sponse to external forces such as those arising from contact. Figure 8
shows two bowling balls dropped onto a mattress from different
heights. Each impact elastifies a different local patch of the mattress
mesh, with size proportional to the total force at impact. This
conservative estimate of which elements need elastification is thanks
to the approximation of a contact response in combination with the
single iteration preconditioned conjugate gradients solve.

5e-25e-35e-45e-5elastic

Fig. 7. Rolling wheels with different elastification thresholds 𝜏𝐸 fall at
approximately the same time matching the fully elastic simulation. Lower
thresholds lead to more accurate simulations. Here, adaptive simulations
share a common rigidification threshold, 𝜏𝑅 = 10−1𝜏𝐸 .

Taken together, the expressivity of the elastification threshold
parameter, along with the spatially varying behavior of the adap-
tive scheme allow us to find suitable settings which yield both a
performance improvement and good visual agreement with non-
adaptive simulations. For example, the elastic blobs (seen at left in
Figure 3) are 2.6 times faster in terms of wall clock time, but visually
indistinguishable from the standard finite element result.
This performance advantage persists even in more complicated

scenes involving objects undergoing frictional contact. For instance,
in the pachinko example in Figure 3, objects both become partially
elastic and rigid as they navigate their way down multiple platforms.
This ability for sliding and rotating objects to be rigid while in
a deformed state is an important feature that improves runtime
performance, in contrast to previous approaches which require the
object to be in an undeformed state to be simulated as rigid [Chen
et al. 2017].

10 m

5 m

Fig. 8. The higher ball drop
elastifies a larger region.

Local elastification and rigidication
also extend to more involved geometries
and interactions. This can be seen in
several of our examples, but the octo-
pus scene provides a good example. As
various parts of the octopus come to rest
they rigidify while allowing other pieces
to keep moving. Pulling on a tentacle
causes only a small local portion of the
mesh to become elastic, while the rest is
simulated as a single rigid body.
A key contribution of our method is that adaptivity is material-

independent and so objects with heterogeneous material properties
behave accordingly. Equivalent forces cause less strain on stiffer
materials, which correctly leads to more aggressive rigidification.
Our method is likewise compatible with arbitrary hyperelastic ma-
terial models. This is a significant advantage over requiring a user
to apriori intuit how an object will interact with a scene. Figure 1
demonstrates this with a rollingwheel that has a rubber tire and steel
hub. The hub remains rigid for much of the simulation, simulated
as a single rigid body, while the tire can elastify and rigidify on
demand. The adaptive simulation retains excellent agreement with
the non-adaptive simulation and is 5 times faster to simulate overall.
Finally, the forest example shows a particularly compelling use

case of our method. In this scene, every tree is a finite element object
and we move an axe through the scene, chopping at the trees. Our
method correctly activates only parts of the trees required to capture
the deformation, the rest are quickly simulated as rigid bodies. This
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leads to a 10 times performance improvement over a standard FEM
simulation. Such scenes, in which interaction in a large world is
focused on a single hero character, are common in video games and
movies.
All our examples feature objects which partially rigidify while

in motion, and while deformed, and unfreeze (elastify) correctly
in response to contact, avoiding common artifacts such as erro-
neous floating bodies. To our knowledge none of these examples
are compatible with previous freezing approaches. Our method
yields significant, often order of magnitude, speedups and is also
compatible with other approaches to accelerate deformable ob-
ject simulation. For instance, we could leverage Updated Sparse
Cholesky Factors [Hecht et al. 2012] to reduce factorization costs.
Our method is complementary to Subspace Condensation [Teng
et al. 2015], which lists as its limitations a difficulty in handling
scenarios where contacts can cause large changes in global motions,
something our method excels at. We avoid the stated limitation of
requiring careful construction of a reduced basis.

5 DISCUSSION AND LIMITATIONS
We currently recompute rigid body properties on each step only
when there is a change in the elements making up the rigid bodies.
However, if there is minimal change, such as just a small number of
elements added or removed from a rigid body, there is an opportu-
nity to do inexpensive incremental updates to the mass properties
and rigid state. Currently the main challenge is when a rigid collec-
tion of elements splits apart into multiple rigid bodies, and designing
efficient algorithms for this case is an interesting direction for future
work. While the current linear algorithm to generate connected
component is not a bottleneck, such incremental approach could
further improve the efficiency of adaptive rigidification.
It would be interesting to consider how to make rigidification

work for hexahedra with trilinear shape functions, or likewise any
model with higher order shape functions. We currently monitor a
single strain rate ¤𝐸 for each element to identify if it should be rigid
or not, but it could be possible to identify collections of vertices
(control points) that could move rigidly based on monitoring their
motion rather than the strain rate of quadrature points.

We currently only merge adjacent elements to form rigid bodies,
while it could be interesting to also merge elements that are in
contact. Our example simulations include cases where multiple
elastic bodies stack and become rigid, and these examples could be
further speed by following an approach similar to that of Coevoet
et al. [2020], which merges rigid bodies and thus reduces the cost of
collision detection and contact force computation.

6 CONCLUSIONS
We have presented a new adaptive method that uses on-the-fly rigid-
ification to accelerate deformable object simulation. Our method
is faster than standard, non-adaptive methods in all the examples
presented and in many cases dramatically so (up to an order of
magnitude wall clock time improvement). This is accomplished
without sacrificing visual agreement with fully deformable methods.
We believe our method to be a first and significant step in the grand
unification of rigid body and deformable simulations. Up until now,

whether to simulate rigidly or with deformation was a high-level
modelling choice, made prior to ever running the simulation – a
decision made for the purposes of improving performance. We
imagine a world where users are free from this choice. Rather,
algorithms will correctly adapt their chosen model based on the
emergent physics of the simulated system. Our work shows that,
not only is this possible, but can be of immense practical value. In
order to spur future work in this important direction, code and data
will be made available. We look forward to the more flexible future
that awaits.
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